My lab has a long-time interest in understanding the mechanisms of transcription and gene regulation in mammalian cells using initially cell-free systems reconstituted with purified gene-specific transcription factors, general cofactors, and components of the general transcription machinery to recapitulate transcriptional events in vitro.
Ascending somatosensory circuitry that shapes the perception of touch and pain. We study the development, function and dysfunction of ascending somatosensory pathways.
The Chong Research group has been conducting clinical and translational research on cutaneous lupus including outcome measure development for clinical trials, biomarkers for diagnosis and prognosis, and disease outcomes.
The Chook Lab studies physical and cellular mechanisms of Kaps. Our long-term goals are to understand how the macromolecular nuclear traffic patterns coordinated by the 20 human Kaps contribute to overall cellular organization.
We use in vivo models of ischemic acute kidney injury in mice, and in vitro model systems to perform detailed studies of proinflammatory genes activated by renal ischemia/reperfusion.
Chung Lab uses primary human specimens, patient-derived xenograft models, and genetically engineered mouse models to study the molecular mechanisms underlying disease stem cell function in hematologic malignancies.
The discovery of ANP many years ago sparked interest in the use of natriuretic peptides to diagnose and treat heart failure and other salt-retaining disorders. Since then, there have been successes and failures. A more comprehensive understanding of the natriuretic peptide system, including the role of noncardiac factors such as race/ethnicity, may encourage more targeted approaches. One of the original insights of de Bold et al, was that the heart is an endocrine organ. Endocrine therapies are administered to individuals with specific evidence of endocrine dysfunction, not to capture short-term beneficial effects. For instance, thyroid hormone is given only to patients in whom hypothyroidism is demonstrated, not based on its metabolic actions. Studies are warranted to determine whether a similar strategy for the heart’s endocrine system can advance the prevention and treatment of cardiometabolic disease. CMRU is strategically positioned to advance research toward this important strategic goal.
The Cobb lab studies signal transduction mechanisms of protein kinases and how kinase structures lead to cell biological functions. We are particularly focused on the contributions of ERK MAP kinases to pancreatic beta-cell function and to lung cancers, and on the cell biological actions of WNK protein kinases.
We believe that understanding the basic biology of the schistosomes is key to developing the next generation of anti-schistosome drugs and vaccines. We also contend that by studying the basic biology of these fascinating organisms, we can better understand important basic biological processes common to all animals, including humans. For that reason, we study schistosomes from multiple angles using a variety of modern molecular approaches.of the lab.
James J. Collins III, Ph.D.
Cell and Molecular BiologyGenetics, Development and Disease
We unite researchers with diverse expertise in computational modeling, biochemical reconstitution, structural analysis of polymers, and cell biology to focus on three distinct condensates that are important for genome homeostasis.
Jeffrey Woodruff
Michael Rosen
Matthew Parker
Qian Cong
Ben Sabari
Cell and Molecular BiologyMolecular BiophysicsMolecular BiophysicsMolecular BiophysicsMolecular BiophysicsGenetics, Development and Disease
The overarching goals of our lab are to understand the posttranscriptional mechanisms of gene expression and regulation in the Kaposi's sarcoma-associated herpesvirus (KSHV) and its human host cell. We are particularly focused on the mechanisms and regulation of nuclear RNA stability, polyadenylation, and mRNA processing by viral and by host cell factors.
The research focus in the Corbin lab investigates strategies that exploits the deviant metabolism of cancer cells (namely the reprogramming of lipid metabolism and altered redox biology) for therapeutic purposes.
The Cotter Research Group is a clinical lab focused on strategies to improve outcomes for patients with liver diseases with a particular focus on alcohol and metabolic dysfunction-associated liver diseases.
Dr. Coughlin's Brain Health Program research focuses on molecular neuroimaging techniques, particularly the use of novel radiotracers with positron emission tomography (PET). Her team aims to inform the molecular understanding of neuropsychiatric conditions, and identify novel, precision therapies guided by imaging results.
Dr. Cowell has built a research program focused on the development of bioinformatics and computational biology methods for studying the immune system and infectious diseases.
Research in Dr. Crandall's Thermal and Vascular Physiology Laboratory focuses on neural control of the cardiovascular system and how different stressors influence that control in healthy, diseased, and injured individuals, such as:
Identifying the consequences of severe burn injuries and subsequent skin grafting on the ability of the burn survivor to regulate internal temperature and cardiovascular function.
Understanding the consequences of aging on cardiovascular stress during simulated heat waves.
Exploring cooling modalities to attenuate thermal and cardiovascular stress.
Understanding how analgesics used on the battlefield affect autonomic control of blood pressure during hemorrhage.