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Abstract

Purpose: The purpose of this study was to address the dosimetric accuracy of syn-

thetic computed tomography (sCT) images of patients with brain tumor generated

using a modified generative adversarial network (GAN) method, for their use in mag-

netic resonance imaging (MRI)‐only treatment planning for proton therapy.

Methods: Dose volume histogram (DVH) analysis was performed on CT and sCT

images of patients with brain tumor for plans generated for intensity‐modulated pro-

ton therapy (IMPT). All plans were robustly optimized using a commercially available

treatment planning system (RayStation, from RaySearch Laboratories) and standard

robust parameters reported in the literature. The IMPT plan was then used to com-

pute the dose on CT and sCT images for dosimetric comparison, using RayStation

analytical (pencil beam) dose algorithm. We used a second, independent Monte

Carlo dose calculation engine to recompute the dose on both CT and sCT images to

ensure a proper analysis of the dosimetric accuracy of the sCT images.

Results: The results extracted from RayStation showed excellent agreement for most

DVHmetrics computed on the CT and sCT for the nominal case, with a mean absolute dif-

ference below 0.5% (0.3 Gy) of the prescription dose for the clinical target volume (CTV)

and below 2% (1.2 Gy) for the organs at risk (OARs) considered. This demonstrates a high

dosimetric accuracy for the generated sCT images, especially in the target volume. The

metrics obtained from the Monte Carlo doses mostly agreed with the values extracted

fromRayStation for the nominal andworst‐case scenarios (mean difference below3%).

Conclusions: This work demonstrated the feasibility of using sCT generated with a

GAN‐based deep learning method for MRI‐only treatment planning of patients with

brain tumor in intensity‐modulated proton therapy.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) is often used in radiation therapy

to accurately contour the clinical target volume (CTV) and organs at

risk (OARs) because of its superior soft tissue contrast compared with

computed tomography (CT) images. The use of MRI images is espe-

cially crucial in treatment sites in the abdomen and brain, where the

tumor volume is mainly surrounded by soft tissue. However, CT

images are still required to retrieve information about the physical

quantities needed for dose calculation, that is, electron density for

radiation therapy with photons and stopping powers for ion therapy.1

Therefore, the current treatment planning workflow for these sites

relies on contouring the target and OARs on MRI, then transferring

the contours to CT via image registration. Magnetic resonance imag-

ing‐CT co‐registration introduces geometrical uncertainties of ~2 mm

for the brain2,3 and 2–3 mm for prostate and gynecological patients.4

Importantly, these errors are systematic, persist throughout treatment,

shift high‐dose regions away from the target,5 and may lead to a geo-

metric miss that compromises tumor control. This problem has

recently led to the concept of MRI‐only–based treatment planning,

where pseudo or synthetic CT (sCT) images for dose calculation are

generated directly from the MRI scan. Magnetic resonance imaging‐
only treatment planning would also reduce radiation dose, imaging

time, and hospital resources.6 Magnetic resonance imaging‐only treat-

ment planning is, then, an attractive concept that is gaining popular-

ity.7 However, accurately generating Hounsfield unit (HU) maps from

MRI images is not straightforward.

The conventional methods proposed in the literature for auto-

matically generating sCT images can be divided into four categories:

bulk density methods, voxel‐based or tissue segmentation‐based
methods, single‐ or multi‐atlas registration with fusion algorithms,

and hybrid approaches that combine both atlas‐ and machine learn-

ing‐based approaches.8,9 The accuracy of these methods has

improved with time, but they still suffer from several limitations.

Voxel‐ or tissue segmentation‐based methods either require the

acquisition of multiple MRI sequences, which result in a longer scan-

ning time, or they use nonstandard sequences seldom available in

clinical routines, such as ultrashort echo time (UTE), to segment bone

and air regions.10 Atlas‐based methods often fail to handle atypical

patient anatomy and may cause intersubject registration errors.11,12

It has been demonstrated that using multiple atlases improves the

results, but the optimal number of atlases remains a question to

address.8,13 The combination of atlas‐based registration and machine

learning‐based methods has demonstrated superior accuracy,14,15 but

these methods largely depend on handcrafted features, which pre-

sent a twofold weakness: first, defining these features requires

human intervention, and second, it is still uncertain which features

have the greatest impact on the model's accuracy. To overcome

these problems, deep learning methods have recently been pro-

posed, because they completely eliminate dependence on hand-

crafted features by allowing the deep network to learn its own

optimal features to accurately generate sCT images. Several groups

have reported a lower HU error between synthetic and real CT

images with deep learning‐based methods than with conventional

methods, such as atlas‐based methods.14 In addition, deep learning‐
based methods showed excellent dosimetric accuracy for treatment

plans based on sCT images generated for brain16 and prostate

patients17 treated with conventional radiation therapy with photons.

However, these small errors in the HU maps generated may still

lead to large dosimetric differences for proton therapy treatments

because of the proton range's high sensitivity to the tissue traversed

along the beam path.18,19 The literature is sparse regarding the dosi-

metric evaluation of sCT generation methods for proton therapy,20‐

23 but a couple of groups that analyzed the performance of conven-

tional methods based on tissue segmentation reported, indeed, the

need to manually pre‐ or post‐process the pseudo HU values to min-

imize proton range differences and ensure reasonable dosimetric

accuracy. For instance, Koivula et al.20 segmented bone regions

before assigning the corresponding HU, while Maspero et al.21 man-

ually inserted air cavities within the body contour as found in the

CT images to minimize interscan differences (at different time

points). Using the newly developed deep learning methods men-

tioned above could help to achieve higher accuracy while removing

any manual operations. In the last year, several groups have started

to investigate the application of deep learning for sCT generation,

achieving very promising results.24‐27 In addition, they analyzed the

dosimetric accuracy of the generated sCT for single field uniform

dose (SFUD) and conventional PTV optimization. But to our knowl-

edge, a proper dosimetric evaluation of these methods for fully

intensity‐modulated proton therapy (IMPT) with robust optimization

has not been performed yet. This article aims to address this issue

by analyzing the performance of a deep learning sCT generation

method based on generative adversarial networks (GANs) for IMPT

treatment planning. Specifically, we focus on treatment plans for

brain patients that have been robustly optimized using a commer-

cially available treatment planning system (RayStation, from Ray-

Search Laboratories) and standard robust parameters28,29 reported in

the literature (3 mm for the systematic setup error and 3% for the

range uncertainty). Robust optimization is the state of the art for

treatment planning in proton therapy, and it might help to mitigate

the small HU errors in the generated sCT images. However, robust-

ness must be properly evaluated to analyze dosimetric accuracy in

all possible scenarios, accounting for both conventional delivery

errors and the uncertainties inherent in the sCT generation algo-

rithm, which is crucial to ensure correct treatment outcomes in pro-

ton therapy. For this purpose, although the plans were optimized

using the analytical dose algorithm embedded in RayStation, we used

an independent Monte Carlo dose engine for the final dose recalcu-

lation and robustness evaluation.

2 | MATERIALS AND METHODS

2.A | Image acquisition

We analyzed CT and MRI images from patients who had undergone

conventional radiotherapy for brain tumors. Tumor sizes varied
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between 1.1 and 42.4 cm3. The images were collected at the ‐
University of Texas Southwestern Medical Center‐ as part of the

standard treatment protocol. Patients underwent both CT and MRI

scanning for radiotherapy treatment planning. All CT images were

acquired in the Department of Radiation Oncology using a 16‐slice
CT (Phillips Big Bore scanner, Royal Philips Electronics, Eindhoven,

The Netherlands), 120 kV, exposure time = 900 ms, and 180 mA. CT

images were acquired with a 512 × 512 matrix and 1.5 mm slice

thickness (voxel size 0.68 × 0.68 × 1.50 mm3). The MRI images were

acquired using a 1.5 T magnetic field strength and a post‐gadolinium
two‐dimensional (2D) T1‐weighted spin echo sequence with TE/TR =

15/3500 ms, a 512 × 512 matrix, and an average voxel size of

0.65 × 0.65 × 1.5 mm3. The CT and MRI were acquired on the same

day/week depending on the availability of the scanner.

2.B | Generative adversarial networks (GANs)

Generative adversarial networks30 are a class of deep machine learn-

ing algorithms used in unsupervised learning and are composed of

two convolutional neural networks (CNN) that compete against each

other: one CNN generates sCT candidates (generator), while the

other CNN evaluates them by comparing them with real CT images

(discriminator). This process is repeated until the discriminator can no

longer distinguish between the real CT and the sCT, which indicates

that the generator has learned to accurately transform MRI to CT

images. This work applied the concept of conditional GAN31 but

modified the original model to improve its performance for our par-

ticular application. First, we used U‐Net32 with mutual information

(MI) as the loss function to overcome difficulties in MRI‐to‐CT regis-

tration, and second, we used several convolutional layers and several

fully connected layers with rectified linear unit (ReLU)33 and binary

cross entropy as the activation/loss functions in the discriminator

network. In the following paragraphs, we describe more detail of

both the generator and the discriminator components of the condi-

tional GAN model.

2.B.1 | Generator

Our model uses a 2D U‐Net as the generator network, which

directly learns a mapping function to convert a 2D grayscale image

to its corresponding 2D sCT image. Our generator network contains

blocks of convolutional 2D layers with variable filter sizes, but the

same kernel sizes and activation functions, except the last layer. The

structure of our U‐Net generator model is illustrated in Fig. 1. On

the left side of the U‐Net structure, the low‐level feature maps are

downsampled to high‐level feature maps using a max pooling layer.

Therefore, we used three 3 × 3 convolutional layers,34,35 each fol-

lowed by an ReLU (activation function), and one max pooling opera-

tion. On the right side of the U‐Net structure, the high‐level feature
maps and low‐level feature maps are fed to the upsampling step

using the transposed convolutional layer to construct the predicted

image. Therefore, we used a 2 × 2 transposed convolutional layer

followed by a concatenate layer and added two 3 × 3 convolutional

layers with an ReLU activation function. In addition, a batch normal-

ization layer was added to each 3 × 3 convolutional layer, and a

dropout layer was added to one 3 × 3 convolutional layer. In the

final layer, we used a 1 × 1 convolutional layer with filter size (1)

and a sigmoid activation function. The generator's loss function was

MI, using an Adam optimizer, of learning rate = 0.0002, beta_1 = 0.5

(exponential decay rates for the moment estimates36).

2.B.2 | Mutual information cost function

We defined the custom loss function “mutual information” between

CT and sCT of the generator using Keras package. MI measures the

“amount of information” of one variable when another variable is

known. Maximizing MI is equivalent to minimizing the joint entropy

(joint histogram). The MI between our two variables, the real CT (xi)

and the generated sCT (G yið Þ, with yi as the MRI), is expressed as:

MI xi;G yið Þð Þ ¼ ∑
xi;G yið Þ

p xi;G yið Þð Þlog p xi;G yið Þð Þ
p xið Þp G yið Þð Þ ¼ H xið Þ

þH G yið Þð Þ � H xi;G yið Þð Þ

where p xi;G yið Þð Þ is the joint distribution, and p xið Þ and p G yið Þð Þ indi-
cate the distribution of images xi and G yið Þ, respectively. Here, the

loss function of the generator and discriminator need to be updated.

The discriminator “D” gets updated by the loss function:

�log D xið Þ � log 1� D G yið Þð Þð Þ

and the generator “G” gets updated by the cost function,

MI xi;G yið Þð Þ, where G is the generator and D is the discriminator,

{xi; yi} is the training pair, i is the number of the image, H(xi) is the

entropy of image xi , and H(xi, G(yi)) is the joint entropy of these two

images. By including joint entropy in the loss function, the amount

of information in the output slice (generated image) was calculated

based on the ground truth slice (real image). Moreover, the gradient

descent optimizer (e.g., Adam) updates weights (model's parameters)

in the direction of minimizing joint entropy via backward propaga-

tion. The loss function (joint histogram) value is low when images

are aligned and high when images are not aligned. Therefore, the

misalignment between the two images was implicitly fixed in this

manner. This concept was proven in the registration framework

using MI as the loss function.37,38

2.B.3 | Discriminator

The discriminator consists of six convolutional layers, with different

filter sizes, but the same kernel sizes and strides followed by five

fully connected layers. The difference of our discriminator with the

discriminator of conditional GAN model was adding more convolu-

tional and fully connoted layers. The convolutional layers use ReLU

as the activation function and include a batch normalization layer.

The dropout layer was added to the fully connected layers, and a

sigmoid activation function was used at the last fully connected

layer. The binary cross entropy was employed for the loss function

and Adam optimizer with learning rate = 0.00005, beta_1 = 0.5 in

78 | KAZEMIFAR ET AL.



this network. We used 3x3 for the kernel size and 2, 4, 8, 16, 32,

and 64 as the filter sizes in the discriminator network. The discrimi-

nator network takes an input with an image size of 352 × 352 and

produces output as a real number in the range [0, 1]. The details of

this structure are shown in Fig. 2.

2.C | Model training, validation, and testing

From a database of 77 patients, we randomly selected 66 patients

(85%) for training and cross‐validation and used the remaining 11

patients (15%) for testing. The cross‐validation procedure, which is

often used to evaluate the stability of the model,39 contained five-

folds in our case. For each fold, the set of 66 patients was divided

into 54 patients (70%) for training and 12 patients (15%) for valida-

tion. The final model was selected as the best model from all folds

(i.e., the one with the lowest loss function) and used to generate the

sCT for the 11 test patients. The MRI/CT pairs used for training

were non‐aligned, and thus, our aim was to overcome the difficulties

related to MRI‐to‐CT registration by using the mutual information as

the loss function (See Section 2.B.2). However, the data were paired,

that is, each MRI and CT pair corresponded to the same patient. All

operations were run on an NVIDIA TESLA K80 GPU with 12 GB

dedicated RAM. We normalized our CT and MRI images by diving

the value of each voxel to the maximum value of each image before

training and testing our model. Then, in sCT images, we multiplied

their voxels' values with maximum value of CT image and used the

DICOM header information to go back to HU values in sCT images.

2.D | Treatment planning and dose calculation

The sCT was rigidly aligned to the CT using Eclipse software (Varian

Medical Systems). Then, both the real and sCT images for each of

the 11 patients in the test set were imported into the treatment

planning system (RayStation v5.99 from RaySearch Laboratories AB).

Target volumes and OARs—including left and right eye, optic nerves,

optic chiasm, and brainstem—were contoured on MRI images. Then,

the contours were transferred to registered CT images and finally

reviewed by the radiation oncologist. In the next step, CT contours

transferred to the registered sCT. An IMPT treatment plan was cre-

ated on the CT, using robust (worst‐case) optimization for pencil

beam scanning,40 with 3% range uncertainty and 3 mm systematic

setup error, which led to 21 scenarios: nominal (zero shift) plus six

shifts to the positive and negative directions in the DICOM axis

(right–left, anterior–posterior, inferior–superior), times three range

scenarios (0%, +3%, and −3%). The prescription dose to the target

volume was 60 Gy. Two coplanar beams were used to create each

plan, often placed in opposite directions (90° and 270°), or moved to

more convenient angles when tumors were located in lateral–poste-
rior positions. The IMPT plan was then used to recompute the dose

on the sCT for dosimetric comparison, using the RayStation analyti-

cal (pencil beam) dose algorithm on a 3 × 3 × 3 mm3 grid. Analytical

algorithms for proton therapy are known to have poor accuracy in

the presence of tissue heterogeneities and range shifters.28,41 There-

fore, we used a second and independent Monte Carlo dose calcula-

tion engine, MCsquare,42,43 to recompute the dose on both CT and

sCT images, thus ensuring a proper analysis of the dosimetric accu-

racy of the sCT images. In addition, we performed a comprehensive

robustness test, which included all treatment uncertainties (system-

atic, random setup errors, and range uncertainty), for each test

patient in both CT and sCT using the MCsquare dose engine. This

novel method for evaluating robustness combines all error parame-

ters to simulate realistic treatment conditions, following a Monte

Carlo approach.44 More specifically, the robustness test included

100 scenarios, each combining the effect of different treatment

errors randomly sampled from their probability distribution as

explained in the paper of Souris et al.44 The setup error values were

F I G . 1 . The structure of the generator
with the details of convolutional and de‐
convolutional layers.
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sampled from a Gaussian distribution of σ = 1.2 mm in each direc-

tion (x, y, and z). The σ = 1.2 mm comes from Van Herk's margin

recipe for a 3 mm margin (m) with a 90% confidence interval

(Σ = 2.5) for the patient population, that is, m = Σσ45. The proton

range errors were likewise sampled from a Gaussian distribution of

σ = 1.6%, which was extracted from Paganetti’s guidelines for Monte

Carlo dose calculations to achieve the recommended 2.4% range

error (1.5 σ).28 The dose distribution was computed for each sce-

nario using the fast Monte Carlo dose engine. The number of parti-

cles used for each simulation, around 107 to 108 particles, was

adapted for each patient using a batch method so that the statistical

noise remained below 2%.46 MCsquare used a dose grid resolution

equal to the original size of the CT (0.68 × 0.68 × 1.50 mm3) for all

computations, thus serving as an extra, high precision check on the

dosimetric accuracy. The conversion from CT HU to stopping pow-

ers implemented in MCsquare is based on the Schneider stoichio-

metric calibration method.47 After dose calculation, the 10% of most

extreme scenarios were disregarded in order to keep a 90% confi-

dence level on the robustness evaluation, similar to the PTV concept

used in conventional radiotherapy. A DVH‐band was generated for

all ROI using the 90% selected scenarios. Then, the metrics corre-

sponding to the worst‐case scenario (the borders of the DVH‐band)
were evaluated as a measure of our plan quality and robustness for

the treatment plans generated on both the CT and the sCT images.

MCsquare used a dose grid resolution equal to the original size of

the CT (0.68 × 0.68 × 1.50 mm3) for all computations, thus serving

as an extra, high precision check on the dosimetric accuracy.

To assess the dosimetric impact of the HU differences between

CT and sCT for all 11 test patients, we analyzed the dose volume

histograms (DVHs) of both the pencil beam and the Monte Carlo

doses computed on the two images. We also evaluated relevant

metrics for the target volume and OARs, such as the mean dose

(Dmean) or the dose delivered to X% of the volume (DX). The robust-

ness of each treatment plan on the CT and sCT images is analyzed

and reported the results with DVH‐bands, from which the aforemen-

tioned metrics could be extracted for the nominal and worst‐case
scenarios. In the robustness test, the DVHs corresponding to all 90

selected scenarios are plotted together in the form of DVH‐bands.
Then, the metrics corresponding to the worst‐case scenario (the bor-

ders of the DVH‐band) are evaluated as a measure of our plan qual-

ity and robustness for the treatment plans generated on both the CT

and the sCT images.

3 | RESULTS

3.A | Synthetic CT generation

The proposed model generated the sCT in about 1 second per

patient, and the training time for the model was around 33 h per

fold during fivefold cross‐validation. To evaluate the accuracy of the

generated sCT images, we calculated the mean absolute error (MAE)

of the HU values for the whole external body contour (generated

automatically in Eclipse for sCT and CT, respectively), for all patients

in the test set. The average MAE ± SD (HU) values for all test data

using each of the five models obtained after cross‐validation were

41.8 ± 10.0 (fold 1), 48.8 ± 13.0 (fold 2), 48.2 ± 12.4 (fold 3),

48.2 ± 12.2 (fold 4), and 48.3 ± 12.0 (fold 5). The average MAE over

all cross‐validation sets was 47.2 ± 11.0.

3.B | Dosimetric evaluation

3.B.1 | Pencil beam dose (nominal case)

Table 1 presents the absolute differences between the DVH metrics,

expressed as percentage (%) of the prescription dose, extracted from

F I G . 2 . The structure of the
discriminator with the details of
convolutional and fully connected layers.
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the nominal pencil beam doses computed by RayStation on the CT

and sCT for all 11 test patients. The mean absolute difference for all

metrics considered was below 2% (1.2 Gy). Indeed, most of the

DVHs computed on CT and sCT overlapped except for some minor

differences in specific cases. An example of the pencil beam doses

for one of the test patients (patient #5) is presented in Fig. 3,

together with the corresponding DVHs. The results for the CTV

metrics, in particular, were remarkably similar, with differences below

0.5% (0.3 Gy) for both target coverage (D95 = 0.4 ± 0.4%) and over-

dose (D5 = 0.4 ± 04%). The difference was slightly higher for the

metrics corresponding to the OARs we studied [left optic nerve

(LON), right optic nerve (RON), brainstem, and optic chiasm], with an

average difference in D2 ranging from 1% to 1.8%, and an average

difference in Dmean ranging from 0.5% to 1.6%. Only a couple of

patients reached a difference above 5% (3 Gy)—patient #1 (differ-

ence in brainstem D2 = 5.1% and RON D2 = 6.9%) and patient #10

(difference in optic chiasm D2 = 5.2% and Dmean = 6.0%), but these

differences are not clinically relevant since the metric itself (D2) is

far from the maximum dose that the organ can tolerate.

3.B.2 | Monte Carlo dose (nominal case and
robustness test)

Table 2 presents the absolute differences between the DVH metrics

obtained from the robustness test on the CT and sCT with the inde-

pendent Monte Carlo dose engine (nominal and worst‐case scenarios)

for all test patients, together with their means and standard devia-

tions (SD). Again, the results for the CTV were particularly good and

consistent with RayStation values for the nominal case, with mean

differences for all metrics below 0.5%. The differences for the worst‐
case metrics were slightly higher, especially for D95, which was

slightly higher (worst D95 = 1.2 ± 1.5%). For this metric (D95), the dif-

ference between the worst case on CT and sCT for individual

patients was above 2% (1.2 Gy) in a few cases (patients #1, #6, and

#7), but it always remained under 5% (3 Gy). The MCsquare doses

for the considered OARs presented a mean difference below 3%

between all metrics computed on the CT and sCT for both nominal

and worst cases. However, the mean difference in the worst case

was around 0.2% to 1.5% higher than the difference in the nominal

case. On the one hand, the differences in the nominal case given by

the MC doses were mostly in agreement with the values extracted

from RayStation, except for one case: patient #1, who presented a

difference in D2 for RON equal to 17.9%, which was 11% higher than

the value obtained from RayStation (Fig. 4). In this case, the affected

organ (RON) has a very small volume and is close to the nasal cavity

(Fig. 4), which increases the chance of the pencil beam algorithm pro-

viding a lower accuracy. On the other hand, the differences for the

worst‐case scenario were below 3% on average, as previously

reported, but again exceeded 5% in some exceptional cases, such as

patient #1 (difference in worst‐case brainstem D2 = 9.8%, brainstem

Dmean = 5.4%, LON D2 = 6.0%, and RON D2 = 14.8%), patient #2

(difference in worst‐case optic chiasm D2 = 12.1%), and patient #7

(difference in worst‐case brainstem D2 = 7.6%).

4 | DISCUSSION

The analysis of the sCT images generated by our GAN model

showed excellent agreement with the corresponding MRI images,

with a very low difference in HU values. The mean absolute error

(MAE) obtained over all test patients was 47.2 ± 11.0 HU, which is

much lower than the values achieved in most previous studies using

conventional sCT generation strategies, such as atlas‐based meth-

ods.48,49 The MAE obtained is also slightly smaller than the values

reported in recently published studies using deep learning methods,

like the CNN method used by Dinkla et al.,16 who reported an MAE

TAB L E 1 Absolute differences between relevant dose volume histogram (DVH) metrics from the pencil beam doses (nominal case) computed
on the computed tomography (CT) and synthetic CT for the 11 test patients, expressed as percentage (%) of the prescription dose (60 Gy).
The last two columns contain the mean over all patients and its standard deviation (SD). NA: not applicable, when the organ was not
contoured for a specific patient. LON/RON: left/right optic nerve.

Organ DX

Patient number

Mean ± SDP1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

CTV D95 1.1 0.2 0.5 0.2 0.1 0.2 0.9 0.5 0.2 0.1 0.9 0.4 ± 0.4

D5 0.7 0.9 0.1 0.4 0.1 0.1 0.8 0.1 0.5 1.1 0.6 0.4 ± 0.4

Dmean 0.0 0.2 0.3 0.2 0.0 0.2 0.9 0.1 0.1 0.6 0.3 0.3 ± 0.3

Brainstem D2 5.1 0.2 NA 0 0.6 0.7 1.0 0.4 0.8 0.2 1.1 1.0 ± 1.5

Dmean 1.1 1.0 NA 0 0.9 0.1 0.6 0.4 0.0 0.0 0.1 0.4 ± 0.4

Optic chiasm D2 0.1 0.8 1.2 0 0.0 0 2.4 NA 0.2 5.2 NA 1.1 ± 1.7

Dmean 1.5 0.2 0.9 0 0.2 0 1.5 NA 0.6 6.0 NA 1.2 ± 1.9

LON D2 2.4 0.0 3.2 0 0.5 0 2.5 0.3 0.4 0.4 NA 1.0 ± 1.2

Dmean 1.2 0.0 2.3 0 0.1 0 0.5 0.7 0.8 1.9 NA 0.7 ± 0.8

RON D2 6.9 0.8 0.4 0 4.1 0 1.4 NA 0.5 NA NA 1.8 ± 2.5

Dmean 1.5 0.2 0.0 0 1.2 0 0.0 NA 0.1 NA NA 0.4 ± 0.6
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of 67 ± 11 HU, or the GAN model developed by Emami et al.,50

which achieved an MAE of 89.3 ± 10.3 HU. More recent publica-

tions from the group at Emory University used a three‐dimensional

(3D) cycleGAN to generate sCT images, and obtained an MAE of

51.32 ± 16.91 HU for pelvic sCT24 and 72.87 ± 18.16 HU for liver

sCT.25 A parallel work from Spadea et al.26 achieved an MAE value

of 54 ± 7 HU for an sCT generation method for brain patients using

a deep convolutional neural network (DCNN) model. Note that the

comparison with published results from different groups can be

affected by differences between patient datasets (tumor location,

patient characteristics, etc.), which may influence reported HU

errors. The novelty of this work is that it demonstrates the ability to

use non‐aligned MR/CT pairs for training, which eliminates the need

for rigid registration in the training MR/CT set. The use of mutual

information in the generator’s loss function seems to be the key to

overcoming issues related to non‐aligned images. Similar work51 used

the conditional GAN architecture similar to the one presented here

to generate sCT images and then to evaluate their photon‐based
dosimetric accuracy for volumetric‐modulated arc therapy treat-

ments. The mean percent difference between the doses calculated in

CT and synthetic CT images was statistically insignificant and less

than 1% overall for all DVH. The dosimetric results showed that the

accuracy of the generated synthetic CT images was sufficient to pro-

duce clinically equivalent treatment plans. This previous work also

compared the performance of a more conventional loss function

based on MAE to the one including MI and showed the superiority

of the MI‐based loss function (47.2 ± 11.0 HU error) over the MAE

one (60.2 ± 22.0 HU error).

The data used for training were paired, that is, the MR/CT pairs

were corresponding to the same patient. However, one of the

advantages of GANs is the ability to learn from unpaired data. Learn-

ing image‐to‐image translation from unpaired data has achieved

excellent results in fields like computer vision, but this task appears

to be rather more complex when medical images are involved, since

it requires the exact reproduction of the same patient anatomy, and

not just any random or average patient anatomy. Nevertheless, it is

an interesting topic to investigate in the future.

Besides generating accurate sCTs in terms of HU values, this

work evaluated the dosimetric accuracy of the sCT images generated

for scanned proton therapy treatment planning. For this purpose,

robust IMPT plans were created on the CT images and recomputed

on the sCT images for dosimetric comparison, using both the analyti-

cal pencil beam algorithm embedded in RayStation and the indepen-

dent Monte Carlo dose engine MCsquare. In addition, we performed

a comprehensive robustness test on the CT and sCT images using

MCsquare to address the dosimetric accuracy of all possible uncer-

tainty scenarios.

The results extracted from RayStation showed excellent agree-

ment between CT and sCT images for most DVH metrics computed

for the nominal case, with a mean absolute difference below 0.5%

(0.3 Gy) of the prescription dose for the CTV and below 2% (1.2 Gy)

for the OARs. This demonstrates a high dosimetric accuracy for the

sCT images generated, especially in the target volume. Outside the

target volume, the dosimetric accuracy decreases. The spatial dose

differences were not performed for all the patients. However, from

the visual inspection of the results, as illustrated in Figs. 3 and 4, the

bigger dose differences happen in the edges of the CTV perpendicu-

lar to the beam direction. We believe that this is due to potential

error. First, there is some level of registration error between CT and

sCT. Second, the fact that the bone and air‐cavity regions are those

(a)

(b) (c) (d)

F I G . 3 . Dose volume histogram (a) for
test patient #5 representing the pencil
beam doses computed in computed
tomography (CT) (solid line) and synthetic
CT (dotted line) for the clinical target
volume and the following organs at risks:
right optic nerve, left optic nerve,
brainstem, and optic chiasm. The
corresponding dose distributions (at one
slice in the center of the target) are
presented in (b) for CT, (c) for sCT, and (d)
the dose difference.
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TAB L E 2 Absolute differences between relevant dose volume histogram (DVH) metrics from the Monte Carlo doses (nominal and robustness
test) computed on the computed tomography (CT) and synthetic CT for the 11 test patients, expressed as percentage (%) of the prescription
dose (60 Gy). The values in regular font correspond to the nominal case, while those in italics correspond to the worst‐case scenario. The last
two columns contain the mean over all patients and its standard deviation (SD). NA: not applicable, when the organ was not contoured for a
specific patient. LON/RON: left/right optic nerve.

Organ DX

Patient number

Mean ± SDP1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

CTV D95 1.3 0.8 0.2 0.4 0.2 0.5 0.5 0.0 0.1 0.7 0.3 0.5 ± 0.4

2.8 0.0 0.2 0.2 0.6 2.2 4.7 0.6 0.2 1.0 0.8 1.2 ± 1.5

D5 0.0 0.0 0.2 0.3 0.5 0.2 0.7 0.3 0.0 0.3 0.4 0.3 ± 0.2

0.2 0.2 0.1 0.5 0.3 0.1 0.5 0.7 0.0 0.4 0.4 0.3 ± 0.2

Dmean 0.3 0.4 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.4 0.1 0.2 ± 0.1

1.2 0.2 0.1 1.4 0.1 0.5 1.8 0.3 0.1 0.5 0.3 0.6 ± 0.6

Brainstem D2 5.1 0.1 NA 0.0 0.9 2.9 4.9 0.1 0.1 0.5 0.9 1.5 ± 2.0

9.7 0.0 NA 0.0 2.0 2.3 7.6 2.4 1.7 1.4 2.6 3.0 ± 3.2

Dmean 1.1 1.5 NA 0.0 0.8 0.2 0.5 0.6 0.2 0.1 0.3 0.5 ± 0.5

5.4 2.3 NA 0.0 1.0 0.7 1.1 1.0 0.7 0.2 1.4 1.4 ± 1.5

Optic chiasm D2 0.3 1.4 0.5 0.0 0.7 0.0 1.9 NA 1.1 0.8 NA 0.7 ± 0.6

0.6 12.1 0.5 0.0 1.1 0.0 2.5 NA 0.9 4.5 NA 2.5 ± 3.9

Dmean 1.3 0.2 1.0 0.0 0.9 0.0 2.1 NA 0.2 0.7 NA 0.7 ± 0.7

1.2 2.8 0.5 0.0 1.8 0.0 3.9 NA 0.2 1.0 NA 1.3 ± 1.4

LON D2 0.1 0.1 1.3 0.0 1.5 0.0 0.2 0.6 0.0 0.6 NA 0.4 ± 0.6

6.0 0.1 0.6 0.0 0.9 0.0 2.3 1.2 0.8 3.6 NA 1.6 ± 1.9

Dmean 1.3 0.0 2.4 0.0 0.1 0.0 0.6 0.7 0.3 3.1 NA 0.8 ± 1.1

0.8 0.0 1.4 0.0 0.5 0.0 2.6 2.3 0.9 3.7 NA 1.2 ± 1.3

RON D2 17.9 0.7 0.0 0.0 2.4 0.0 1.0 NA 0.8 NA NA 2.8 ± 6.1

14.8 4.9 0.3 0.0 0.8 0.0 2.5 NA 0.5 NA NA 3.0 ± 5.0

Dmean 3.5 0.3 0.0 0.0 1.5 0.0 0.1 NA 0.4 NA NA 0.7 ± 1.2

3.1 1.5 0.1 0.0 1.5 0.0 1.5 NA 0.3 NA NA 1.0 ± 1.1

(a) (b)

(c) (d)

F I G . 4 . Pencil beam (PB) doses for patient #1 on the computed tomography (CT) (a) and synthetic CT (b), together with the dose difference,
and the corresponding Monte Carlo (MC) doses (c and d). The right optic nerve (RON) and the clinical target volume are contoured in red and
yellow, respectively. The red arrow points toward the region next to the nasal cavity, where a big discrepancy between pencil beam and MC
doses in the sCT is found for the RON D2.
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regions where the model has the biggest prediction error. Thus,

since the two opposite beams pass through the skull bone, the dose

gets distorted (range undershoot/overshoot) due to the HU differ-

ences in this part. The superior accuracy obtained within the target

volume may be explained by the use of robust optimization. In fact,

only the objectives applied to the CTV and the brainstem were

selected as robust, while the other OARs were treated as regular

(non‐robust) volumes, that is, they were only evaluated in the nomi-

nal case during the optimization process. Selecting all organs as

robust may help to increase the robustness against small HU varia-

tions for the rest of the organs and thus increase their dosimetric

accuracy. However, this may increase the optimization time. Further

investigation is needed to determine whether the dosimetric gain is

worth the computational cost.

The metrics obtained from the Monte Carlo doses were mostly

in agreement with the values extracted from RayStation for the

nominal case (mean difference below 3%), which confirms the excel-

lent dosimetric accuracy reported from the pencil beam doses. Only

one case (patient #1) presented a large dose discrepancy for the

right optic nerve (difference between CT and sCT in RON D2 equal

to 17.9%, which was 11% higher than the value obtained from RayS-

tation). In this particular case, the RON was very close to the nasal

cavity, which is a challenging region for pencil beam algorithms

because of the air, bone, and soft‐tissue interface. In addition, the

volume of this structure is very small, which translates small point

differences into big discrepancies for the associated dose metric (D2

in this case). Although this difference was not clinically relevant in

our case because the dose was far below the clinical constraint, we

recommend using an MC dose engine for final verification in cases

where the organs are close to complex interfaces and the dose is

close to an organ’s maximum tolerance. Note that the dose grid res-

olution used by MCsquare was equal to the original resolution of

the CT and sCT (0.68 × 0.68 × 1.50 mm3), which is much smaller

than the dose grid used in RayStation (3 × 3 × 3 mm3). This may

also contribute to the differences seen when comparing the Monte

Carlo and pencil beam results. Nevertheless, the final conclusions are

drawn from the Monte Carlo results, which provide us with a very

precise and accurate dosimetric evaluation.

For the worst‐case scenario, the differences between the doses

computed on CT and sCT were slightly higher than for the nominal

case in some patients, but they generally remained below 3%, except

for a few metrics in certain patients (Table 2, patients #1, #2, and

#7). Eventually, these errors could be reduced by increasing the

robustness parameters used during plan optimization. In this study,

we used 3 mm for the systematic setup error and 3% for the range

uncertainty, which are the standard values reported in the literature.

Increasing these values could help to reduce the sensitivity of the

IMPT plans to the small differences in HU between the CT and sCT.

But finding the most suitable values may require a detailed analysis

of how best to translate the HU error associated with our sCT gen-

eration model into an equivalent robustness recipe, given the exist-

ing parameters available in commercial software (i.e., systematic

setup error and constant range uncertainty). This type of study has

already been performed to account for random setup errors,52 and a

similar workflow could be applied to our particular problem. An alter-

native strategy to reduce the dosimetric differences between the CT

and sCT would be to simulate HU errors directly in the robustness

scenarios used during the optimization process. This would require

generating an HU error distribution that could later be sampled to

generate multiple scenarios to cover the entire error space.

As previously mentioned, the literature on the use of sCT images

for MRI‐only proton therapy planning is rather scarce. However,

given the increasing success of MR‐guided photon radiotherapy,53

we believe that the medical community will soon turn its attention

to MRI‐guided proton therapy.7,54 In fact, proton therapy patients

could actually benefit even more than photon therapy patients from

MRI‐only therapy planning, because the proton range's high sensitiv-

ity to tissue changes suggests an even greater need for adaptation

and guidance during treatment. Additionally, several groups are

investigating how to address the issues related to the behavior of

charged particles (protons in this case) in a magnetic field, and they

have achieved promising results.55,56 Therefore, addressing the dosi-

metric accuracy of state‐of‐the‐art sCT generation methods for pro-

ton therapy, such as the one presented in this study, is crucial to

bringing this technology closer to the clinic. So far, only few studies

have evaluated the dosimetric accuracy of sCT images for proton

therapy in brain patients. Rank et al.57 used a classification‐based tis-

sue segmentation method to generate sCTs for three patients, which

required two non‐standard sequences (ultrashort echo time [UTE]

and turbo spin echo [TSE]), in addition to their regular protocol. They

reported an MAE of 141–165 HU, with large deviations in air cavi-

ties and bones that led to underdosages to the target volume of up

to 2%. Koivula et al.20 reported an MAE of 34 HU and a relative

dose difference from sCT to CT within 0.5% in ten brain patients for

their dual HU conversion model enabling heterogeneous tissue rep-

resentation. However, their method excluded air cavity volumes,

which is one of the most challenging parts, and required that the

bone regions from the MRI images be segmented before the HU

conversion. In both studies, the tumor was located in rather homo-

geneous regions, which might explain their good results, but they

acknowledge the limitations of their method for tumors close to the

nasal cavity, as is the case for some of our patients (Fig. 3). In addi-

tion, the need for multiple non‐standard MRI sequences or dedicated

software for bone segmentation complicates the implementation of

these methods in clinical practice. Another group analyzed the use

of a commercial solution for creating bulk‐assigned sCTs for prostate

patients21 and reported the need to manually adapt the assigned

synthetic HU values by, for example, inserting the air cavities found

on the CT. Again, the need for human intervention impedes the full

automation of MRI‐only proton therapy planning and the implemen-

tation of MRI‐guided online treatment adaptation strategies.7 This is

even more desirable for IMPT treatments than for conventional

radiotherapy, given the potential to reduce inter‐ and intra‐fraction
motion errors.19,58 In contrast, the method proposed in this work

enables a fast (1 s for sCT generation) and entirely automatic MRI‐
only treatment planning process that removes all manual
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components from the workflow and achieves excellent dosimetric

accuracy. A more recent study from Spadea et al.26 investigated the

use of deep convolutional neural networks for sCT generation and

also analyzed their dosimetric accuracy for single‐field uniform dose

(SFUD) plans for brain tumor patients. In contrast, the present work

investigated the dosimetric accuracy of the generated sCT for fully

IMPT treatment planning, which is much more challenging than the

case of SFUD due to the extra sensitivity of this technique to HU

uncertainties. Therefore, worst‐case robust optimization on the CTV

was used to generate the plans. Moreover, we performed a com-

plete evaluation of the robustness of the generated plans, recomput-

ing the dose on both CT and sCT for all considered uncertainty

scenarios with an independent Monte Carlo dose engine. No previ-

ous study has performed such a complete dosimetric and robustness

evaluation, which we believe is crucial for IMPT treatment plans,

given their sensitivity to dose calculation and delivery uncertainties.

5 | CONCLUSIONS

This work explanted the feasibility of using sCT images generated

with a deep learning method based on generative adversarial net-

works (GANs) for intensity‐modulated proton therapy. We tested

the method in brain tumors—some of them located close to complex

bone, air, and soft‐tissue interfaces—and obtained excellent dosimet-

ric accuracy even in those challenging cases. The proposed method

can generate sCT images in around 1\,s without any manual pre‐ or
post‐processing operations. This opens the door for online MRI‐
guided adaptation strategies for IMPT, which would eliminate the

dose burden issue of current adaptive CT‐based workflows, while

providing the superior soft‐tissue contrast characteristic of MRI

images.
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