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SUMMARY

Membrane fusion is an energy-consuming process
that requires tight juxtaposition of two lipid bilayers.
Little is known about how cells overcome energy bar-
riers to bring their membranes together for fusion.
Previously, we have shown that cell-cell fusion is an
asymmetric process in which an ‘‘attacking’’ cell
drills finger-like protrusions into the ‘‘receiving’’ cell
to promote cell fusion. Here, we show that the re-
ceiving cell mounts a Myosin II (MyoII)-mediated me-
chanosensory response to its invasive fusion part-
ner. MyoII acts as a mechanosensor, which directs
its force-induced recruitment to the fusion site, and
the mechanosensory response of MyoII is amplified
by chemical signaling initiated by cell adhesion mol-
ecules. The accumulated MyoII, in turn, increases
cortical tension and promotes fusion pore formation.
We propose that the protrusive and resisting forces
from fusion partners put the fusogenic synapse
under high mechanical tension, which helps to over-
come energy barriers for membrane apposition and
drives cell membrane fusion.

INTRODUCTION

Membrane fusion occurs in a diverse array of biological pro-

cesses, including viral entry (Kielian and Rey, 2006; Melikyan,

2008), intracellular trafficking (Doherty and McMahon, 2009;

Jahn and Fasshauer, 2012), and fusion between cells (Aguilar

et al., 2013; Chen and Olson, 2005; Sapir et al., 2008). It is an en-

ergy-consuming process in which two initially separate lipid bila-

yers merge into one. For membrane fusion to occur, several

energy barriers have to be overcome. These include bringing

together two membranes containing repulsive charges and the

subsequent destabilization of the apposing lipid bilayers, leading

to fusion pore formation and expansion. Studies of intracellular

vesicle fusion have led to the identification of many proteins,

including SNAREs, SM proteins, synaptotagmins, and Rabs,

which are required for tight juxtaposition of vesicle and target

membranes (Jahn and Fasshauer, 2012; Jahn and Südhof,
Devel
1999; Martens and McMahon, 2008). However, relatively little

is known about how cells overcome the energy barriers to fuse

their plasma membranes during intercellular fusion.

Previously, we have shown in both Drosophila embryos and a

reconstituted cell-fusion culture system that cells utilize actin-

propelled membrane protrusions to promote fusogenic protein

engagement and fusion pore formation (Chen, 2011; Duan

et al., 2012; Jin et al., 2011; Sens et al., 2010; Shilagardi et al.,

2013). In Drosophila embryos, the formation of multinucleate

body-wall muscles requires fusion between two types of muscle

cells, muscle founder cells and fusion-competent myoblasts

(FCMs) (Abmayr et al., 2008; Chen and Olson, 2004; Rochlin

et al., 2010). Prior to myoblast fusion, a founder cell and an

FCM form an adhesive structure, which we named ‘‘fusogenic

synapse’’ (Chen, 2011; Sens et al., 2010), mediated by two pairs

of immunoglobulin (Ig)-domain-containing cell adhesion mole-

cules, Dumbfounded (Duf) and its paralog Roughest (Rst) in the

founder cell (Ruiz-Gómez et al., 2000; Strünkelnberg et al.,

2001) and Sticks and stones (Sns) and its paralog Hibris in the

FCM (Artero et al., 2001; Bour et al., 2000; Dworak et al., 2001;

Shelton et al., 2009). These cell-type-specific adhesion mole-

cules organize distinct actin cytoskeletal rearrangements in the

two adherent muscle cells, resulting in the formation of asym-

metric F-actin structures at the fusogenic synapse (Abmayr

and Pavlath, 2012; Chen, 2011; Haralalka et al., 2011; Sens

et al., 2010). Specifically, the ‘‘attacking’’ FCM generates an

F-actin-enriched podosome-like structure (PLS), which invades

the ‘‘receiving’’ founder cell; the latter forms a thin sheath of actin

underlying its plasma membrane (Chen, 2011; Sens et al., 2010).

In a reconstituted cell culture system, the S2R+ cells, which are

of hemocyte origin and do not express muscle-cell-specific cell

adhesionmolecules, can be induced to fuse at high frequency by

incubating cells coexpressing the FCM-specific cell adhesion

molecule Sns and a C. elegans fusogenic protein Eff-1 with cells

expressing Eff-1 only (Shilagardi et al., 2013). This cell culture

system mimics the asymmetric actin cytoskeletal rearrange-

ments during Drosophila myoblast fusion in that it also requires

actin-propelled PLS protruding from the Sns-Eff-1-expressing

attacking cells into the Eff-1-expressing receiving cells (Shila-

gardi et al., 2013). The invasive protrusions from the attacking

fusion partners in both Drosophila embryo and cultured S2R+

cells appear to impose a mechanical force on the receiving

fusion partners, since they cause inward curvatures on the latter

(Sens et al., 2010; Shilagardi et al., 2013). However, previous
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Figure 1. Founder-Cell-Specific Function

of Rho1, Rok, and MyoII in Drosophila

Myoblast Fusion

(A–H) Stage 15 embryos were labeled with

a-muscle MHC antibody. Ventral lateral muscles

of three hemisegments are shown in each panel.

Anterior is at the left and posterior is at the right. (A)

Wild-type (WT). (B and C) Normal myoblast fusion

in rho1 (B) and rok (C) mutant. (D) Myoblast fusion

defect in rok; rho1 double mutant. (E and F) Ex-

pressing a dominant-negative form of Rho1,

Rho1N19, in founder cells of WT (E) and rho1

mutant (F) caused myoblast fusion defects. Note

the more severe defect in (F) than in (E). (G and H)

Expression of a phosphomimetic form of RLC,

RLCE21 (G), but not a nonphosphorylatable form,

RLCA20,21 (H), rescued the fusion defect in rok;

rho1 double mutant. Arrowheads indicate unfused

FCMs. Bar, 20 mm.

(I) Quantification of myoblast fusion. The fusion

index was determined as the percentage of the

number of Ladybird early-positive nuclei in mutant

versus WT segmental border muscles (SBMs).

Error bars indicate SEM. ***p < 10�4.

See also Figure S1 and Table S1.
studies have not revealed how these invasive protrusions affect

the mechanics of the receiving cells.

Cellular response to mechanical force is critical for diverse

biological processes such as tissue morphogenesis, growth

control, and cell fate specification (Discher et al., 2009; Farge,

2011; Gauthier et al., 2012; Guillot and Lecuit, 2013; Mammoto

et al., 2013; Vogel and Sheetz, 2009). The nonmuscle Myosin II

(MyoII) is a well-known intracellular effector of mechanosensory

responses (Aguilar-Cuenca et al., 2014; Gauthier et al., 2012;

Guillot and Lecuit, 2013; Lecuit et al., 2011; Mammoto et al.,

2013; Zajac and Discher, 2008). MyoII is activated by chemical

signaling pathways, one of which involves cell surface proteins

such as integrin, the Rho GTPase, and Rho kinase (Rok) (Amano

et al., 1996). Activated MyoII, in turn, generates contractile force

to regulate cellular behaviors such as migration, adhesion, and

shape change. However, what initiates MyoII recruitment to

cellular locations in response to mechanical stimuli remains un-

clear. A prevailing model based on genetic analysis in many cell

types suggests that MyoII is recruited by chemical signaling,

involving integrin, Rho, andRok. Alternatively, recent biophysical

studies demonstrated that MyoII can be repositioned by exter-
562 Developmental Cell 32, 561–573, March 9, 2015 ª2015 Elsevier Inc.
nally applied mechanical force (Effler

et al., 2006; Fernandez-Gonzalez et al.,

2009; Luo et al., 2013; Ren et al., 2009),

and this effect is through MyoII’s direct

sensing of mechanical tension (Luo

et al., 2013; Ren et al., 2009).

In this study, we demonstrate that, dur-

ing cell-cell fusion, the receiving fusion

partner mounts a MyoII-mediated me-

chanosensory response to the invasive

force from the attacking cell at the fuso-

genic synapse. MyoII is recruited to the

fusogenic synapse because of its intrinsic
ability to sense mechanical strains in the actin network, whereas

chemical signaling from cell adhesion molecules, Rho, and Rok

increases the amount of activated MyoII and amplifies the me-

chanosensory response of MyoII. The accumulatedMyoII gener-

ates additional cortical tension required for resisting the PLS

invasion, thereby promoting cell membrane juxtaposition and

fusion.

RESULTS

Rho1, Rok, and MyoII Promote Drosophila

Myoblast Fusion
In a genetic screen for new components involved in Drosophila

myoblast fusion, we identified a function for Rho1, Rok, and My-

oII. Although zygotic single mutants of these genes did not

exhibit a myoblast fusion defect due to maternal contribution

(Figures 1A–1C and 1I; Figures S1C and S1L; Table S1), muta-

tions in rho1 and myoII significantly enhanced the fusion defect

caused by a hypomorphic mutation in the founder-cell-specific

adhesion molecule Duf, dufrp (Figures S1D, S1E, S1G, and

S1L; Table S1). In addition, rho1 enhanced the fusion defect



Figure 2. Localization of Rho1, Rok, and MyoII at the Fusogenic

Synapse
Fusogenic synapses (arrowheads) in stage 14 embryos marked by F-actin foci

(phalloidin; red) and cell adhesion molecules Duf or Sns (a-Duf or Sns; blue).

The attacking FCMs are outlined in the merged panels except for the area of

the fusogenic synapse, the plasma membrane within which is impossible to

delineate at this resolution.

(A–C0 0 0) Founder-cell-specific accumulation of Rho1, Rok, and MyoII at the

fusogenic synapse. Fluorescently tagged Rho1 (A–A0 0 0), RokK116A (a kinase-

dead form; Simões et al., 2010) (B–B0 0 0 ), and Zip (C–C0 0 0) were specifically

expressed in founder cells and visualized by a-GFP staining (green).

(D–F0 0 0 ) MyoII activation at the fusogenic synapse. Activated MyoII RLC was

visualized by a-phospho-RLC staining (green) (D and F) or by a-Flag staining

(green) of founder cell-expressed phosphomimetic RLCE21-Flag (E). Note the

enrichment of phospho-RLC and RLCE21 at the fusogenic synapse in wild-type

(WT) (D and E) and the markedly reduced accumulation of phospho-RLC in

embryo with decreased Rho1 activity (F).

(G–H0 0 0) RLC phosphorylation is required for its accumulation at the fusogenic

synapse. Flag-tagged RLCE21, or nonphosphorylatable RLC, RLCA20, 21, was

expressed with the endogenous rlc promoter and visualized by a-Flag staining

Devel
caused by the loss of elmo, which encodes a subunit of a

Rac GEF (Geisbrecht et al., 2008) (Figures S1H, S1I, and S1L;

Table S1), and the rok; rho1 double mutant also exhibited a

fusion-defective phenotype (Figures 1D and 1I; Table S1). It is

interesting that founder-cell-specific expression of a dominant-

negative form of Rho1 (Rho1N19) disrupted fusion in wild-type

embryos and, more significantly, in rho1 mutant embryos (Fig-

ures 1E, 1F, and 1I; Table S1), whereas FCM-specific expression

of Rho1N19 caused a less severe fusion defect, which could be

due to the diffusion of Rho1N19 from FCMs to founder cells after

cell fusion (Figure 1I; Table S1). These data suggest that Rho1

may function in founder cells. In support of this, founder-cell-

specific, but not FCM-specific, expression of Rho1 restored

fusion in the elmo; rho1 double mutant to the level of the elmo

single mutant, demonstrating a specific function of Rho1 in

founder cells (Figures S1J–S1L; Table S1). To investigate

whether Rho1 and Rok function through the Rho1/Rok/MyoII

pathway, we examined the ability of phosphorylated MyoII regu-

latory light chain (RLC) to rescue the fusion defect in rho1; rok

double-mutant embryos. Indeed, expression of a phosphomi-

metic active form of RLC, RLCE21 (in which the Rok phosphory-

lation site is changed to Glu)—but not the nonphosphorylatable

inactive form, RLCA20,21—with the endogenous rlc promoter

rescued the fusion defect in rok; rho1 double-mutant embryos

(Figures 1G–1I; Table S1). Moreover, expression of RLCE21 in

founder cells of dufrp; rho1 double-mutant embryos restored

fusion to the level of the dufrp single mutant (Figures S1F and

S1L; Table S1). Thus, the principal requirement of the Rho1-

Rok pathway in myoblast fusion is to activate MyoII by phos-

phorylating its RLC in founder cells.

Rho1, Rok, and MyoII Are Enriched at the Fusogenic
Synapse in Founder Cells
To investigate the subcellular localization of Rho1, Rok, and My-

oII, we first performed antibody-labeling experiments using an

a-Rho1 antibody to detect the endogenous Rho1 or an a-GFP

antibody to detect GFP-Rho1 under the control of the endoge-

nous rho1 promoter. Both endogenous Rho1 and GFP-Rho1

were enriched at the fusogenic synapse and partially colocalized

with the founder-cell-specific adhesion molecule Duf (Figures

S2A and S2B). However, it was difficult to delineate the potential

sidedness of Rho1 localization simply by confocal imaging of

endogenous Rho1 or rho1::GFP-Rho1 due to the limited resolu-

tion of the confocal microscopy (200 nm), the tight juxtaposition

of two adherent membranes (�10 nm thickness), and the 3D

configuration of the fusogenic synapse. Indeed, partially ‘‘over-

lapping’’ signals of the founder-cell-specific Duf and the FCM-

specific F-actin foci at the fusogenic synapse are frequently

observed by confocal imaging (Sens et al., 2010). Therefore,

we expressed GFP-Rho1 in a cell-type-specificmanner to deter-

mine the potential sidedness of its accumulation. As shown in

Figure 2A, GFP-Rho1 specifically expressed in founder cells

accumulated at the fusogenic synapse. To assess the localiza-

tion of GFP-Rho1 in FCMs, we took advantage of a fusion
(G and H). Note the high level accumulation of RLCE21 (G), but not RLCA20,21

(H), at the fusogenic synapse. Bars, 5 mm.

See also Figures S2 and S3.
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Figure 3. Rho1 Is Recruited and Activated

by Duf upon Sns Binding

(A–A0 0 0) S2R+ cells coexpressing GFP-Rho1

(green) and Duf-Flag (blue) were mixed with cells

expressing Sns-V5 (red). Note the accumulation of

Rho1 at the cell-cell contact site (arrowhead). (A0 0 0 0)
The relative intensity of Rho1 and Duf along the

marked line in (A0 0 0 ) was plotted. Bar, 5 mm.

(B–B0 0 0) S2R+ cells coexpressing GFP-Rho1

(green) and Sns-V5 (red) were mixed with cells

expressing Duf-Flag (blue). Note the lack of Rho1

enrichment at the cell-cell contact site (arrow-

head). Bar, 5 mm.

(B0 0 0 0) Intensity plot along the marked line in (B0 0 0).
(C and C0) Increased Rho1 activity in cells coex-

pressing Rho1 and Duf upon Duf-Sns interaction.

(C) Rho1 protein was pulled down by the RBD of

Rhotekin. Note the enhanced level of Rho1 pull

down when cells coexpressing Duf and Rho1

were mixed with cells expressing Sns. (C0)
Quantification of Rho1 pull-down levels from

three independent experiments. Error bars indi-

cate SEM.
mutant, solitary (sltr) (Kim et al., 2007), in which FCM-expressed

GFP-Rho1 was retained in FCMs due to defects in myoblast

fusion. As shown in Figure S2C, GFP-Rho1 expressed in FCMs

did not accumulate at the fusogenic synapse. Thus, Rho1 is spe-

cifically recruited to the fusogenic synapse in founder cells. In

contrast to wild-type embryos, Rho1 showed no specific enrich-

ment in duf, rst double-mutant embryos (Figure S2D), in which

founder cells and FCMs fail to adhere, leading to a complete

fusion defect (Strünkelnberg et al., 2001), thus demonstrating

that Rho1 recruitment to the fusogenic synapse is dependent

on muscle cell adhesion mediated by the functionally redundant

cell adhesion molecules Duf and Rst. To assess whether the

Rho1 recruited by Duf and Rst is activated, we performed pull-

down experiments in Drosophila S2R+ cells using the Rhotekin

Rho-binding domain (RBD), which selectively binds to the

GTP-bound active Rho1. As shown in Figure 3, Rho1 was re-

cruited to cell-cell contact sites when it was cotransfected with

Duf, but not Sns (Figures 3A and 3B), and the recruited Rho1

was activated, shown by enhanced pull down by RBD compared

with controls (Figures 3C and 3C’).

Like Rho1, Rok and MyoII (both myosin heavy chain [MHC],

Zipper [Zip], and regulatory light chain [RLC]) showed accumula-

tion at the fusogenic synapse (Figures S2E–S2G), and their accu-

mulation was exclusive in founder cells (Figures 2B and 2C) but

not FCMs (Figures S2H and S2I; Figure S3A). Such accumulation

was not due to an increased amount of F-actin, since no obvious

actin accumulation at the fusogenic synapse was observed in

founder cells (Sens et al., 2010). Moreover, phosphorylated

RLC was also enriched at the fusogenic synapse, visualized by

either an a-phospho-RLC antibody (Figure 2D) or an a-Flag anti-

body against the phosphomimetic form Flag-RLCE21 specifically

expressed in founder cells (Figure 2E), demonstrating that the

accumulated MyoII in founder cells is also activated. Notably,

in sltr mutant embryos where GFP-Zip was absent in FCMs

(Figure S2I), MyoII still accumulated at the fusogenic synapse
564 Developmental Cell 32, 561–573, March 9, 2015 ª2015 Elsevier
visualized by a-phospho-RLC antibody (Figure S2J), presumably

due to prolonged presence of cell adhesion molecules (Kim

et al., 2007) and enrichment of MyoII in founder cells (Figure 2C).

MyoII activation at the fusogenic synapse required Rho1 activity,

as shown by the significantly reduced level of phospho-RLC in

rho1mutant embryos expressing Rho1N19 in founder cells (here-

inafter, these embryos are referred to as founder cell::Rho1N19;

rho1) (Figure 2F). In addition, Rok activity was also critical for

MyoII activation, demonstrated by the high-level accumulation

of RLCE21, but not RLCA20,21, at the fusogenic synapse (Figures

2G and 2H).

MyoII Can Be Recruited to the Fusogenic Synapse
Independently of Duf-Mediated Rho1 Signaling in
Drosophila Embryos
Although MyoII activation requires the presence of Rho1 and

Rok in the cytoplasm, it was unclear whetherMyoII accumulation

at the fusogenic synapse is triggered by the Duf/Rst-initiated

signaling to Rho1. To address this question, we analyzed duf,

rst double-mutant embryos expressing a truncated Duf protein

that lacks its entire intracelluar domain (DufDintra). DufDintra

can attract FCMs with its intact ectodomain and mediate normal

muscle cell adhesion, demonstrated by the presence of normal

invasive PLSs in DufDintra-expressing duf, rst mutant embryos.

However, DufDintra fails to transduce any chemical signal from

plasma membrane to Rho1, as Rho1 exhibited no accumulation

at the majority (80.3%, n = 56) of the muscle cell adhesion sites.

compared with other regions of the cell cortex (Figures 4A and

4E), whereas Rho1 showed normal accumulation at the fuso-

genic synapse in DufDintra-expressing wild-type embryos (Fig-

ure S3B). Despite the absence of Rho1 recruitment, MyoII (Zip)

still accumulated at the majority of these adhesion sites and co-

localized with DufDintra (Figure 4B). Specifically, while strong

MyoII accumulation (R2-fold enrichment) was observed at

82.1% (n = 56) fusogenic synapses in wild-type embryos,
Inc.



Figure 4. MyoII and Rok Enrichment at the Fusogenic Synapse Is

Independent of Duf-Mediated Rho1 Signaling

(A–D0 0 0 ) Fusogenic synapses (arrowheads) in stage 14 embryos marked by

F-actin foci (phalloidin; red) and DufDintra (a-Flag; blue). (A–A0 0 0) Rho1

recruitment to the fusogenic synapse is dependent on the intracellular domain

of Duf. GFP-Rho1 was expressed with DufDintra-Flag in all muscle cells in

duf,rst double mutant. Note the lack of Rho1 enrichment at the fusogenic

synapse. (B–D0 0 0) Accumulation of activated MyoII and Rok at the fusogenic

synapse in DufDintra-expressing duf,rst double-mutant embryos. Note the

enrichment of GFP-Zip (B), activated RLC (a-phospho-RLC) (C), and Venus-

RokK116A (D) at the fusogenic synapse.

(E) The relative intensity of Zip, Rok, and Rho1 enrichment at fusogenic syn-

apses in wild-type and DufDintra-expressing duf,rst double-mutant embryos.

The intensity of fluorescent signal at the fusogenic synapse was compared

with that in the adjacent cortical region. Note that in DufDintra-expressing

Devel
45.7% (n = 70) of those in DufDintra-expressing duf, rst mutant

embryos showed a similar level of MyoII accumulation, and

28.6% showed an intermediate level of MyoII accumulation

(�1.5-fold enrichment) (compare with 14.3% in wild-type em-

bryos) (Figures 4B and 4E). As a control, MyoII accumulation

was unaffected by DufDintra expression in wild-type embryos

(Figure S3D). Moreover, strong phospho-RLC signal was de-

tected at 36.4% (n = 44) of muscle cell adhesion sites, confirming

that the accumulated MyoII was activated (Figure 4C). Corre-

sponding to MyoII activation, 31.7% of the muscle cell adhesion

sites (n = 76) showed strong Rok accumulation (Figures 4D and

4E), and Rok accumulation was unaffected by DufDintra ex-

pression in wild-type embryos (Figure S3C). Thus, even in the

absence of Duf-induced Rho1 accumulation and activation, My-

oII and Rok can still accumulate and be activated at the muscle

cell adhesion sites in founder cells, albeit less robustly than wild-

type (Figure 4E). The partial activation of MyoII likely accounts for

the partial rescue of myoblast fusion by DufDintra in duf, rst dou-

ble-mutant embryos (Bulchand et al., 2010).

To investigate whether MyoII and Rok accumulation in the

absence of Duf/Rst-induced Rho1 enrichment at the fusogenic

synapse could be due to chemical signaling from other adhesion

molecules, we examined the localization of integrin, E-cadherin,

andN-cadherin atmuscle cell adhesion sites in the DufDintra-ex-

pressing duf, rst embryos. As shown in Figure S4, none of these

adhesionmolecules showed any specific enrichment at themus-

cle cell adhesion sites. These results, together with previous re-

ports showing that integrins and cadherins are not required for

myoblast fusion (Dottermusch-Heidel et al., 2012; Prokop

et al., 1998), argue against the involvement of these adhesion

molecules in the adhesion of FCMs to founder cells and chemical

signaling. Instead, the accumulation of MyoII and Rok in the

absence of Duf-mediated Rho1 signaling may be triggered by

other types of stimuli, such as the mechanical force imposed

by the FCM-specific invasive PLS at the fusogenic synapse.

Rho1-Independent MyoII Recruitment to the Fusogenic
Synapse in S2R+ Cells
To further probe MyoII accumulation at the fusogenic synapse in

the absence of Duf-induced Rho1 signaling, we took advantage

of a reconstituted cell-fusion culture system using Drosophila

S2R+ cells (Shilagardi et al., 2013). In this culture system,

Sns-Eff-1-expressing attacking cells generate actin-propelled

PLSs, which invade the Eff-1-expressing receiving cells to

induce high-percentage of cell-cell fusion. Knocking downMyoII

by RNAi in the receiving cells, but not in the attacking cells, led to

a significant decrease in cell-cell fusion without affecting Sns or

Eff-1 expression, suggesting that MyoII specifically functions in

the receiving cells as in Drosophila embryos (Figures S5A and
duf,rst double-mutant embryos, >70% of fusogenic synapses showed sig-

nificant (>1.5-fold) Zip and Rok enrichment, whereas <20% showed Rho1

enrichment (n > 40 for each protein).

(F–H0 0) MyoII and Rok, but not Rho1, accumulate at the fusogenic synapse in

the receiving S2R+ cells. Attacking cells expressing Sns and Eff-1 generated

F-actin-enriched foci (F0, G0, and H0). The receiving cells expressed Eff-1 and

RFP-Zip (F), Venus-RokK116A (G) or GFP-Rho1 (H).

Bars, 5 mm.

See also Figure S4.
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Figure 5. MyoII Functions as a Mechano-

sensor for Cortical Stress Independently of

Rho and Rok

(A–G) MyoII accumulation in response to me-

chanical stress revealed by the MPA assay. (A–F)

Representative differential interference contrast

(DIC) (left) and fluorescent (right) images of S2 cells

aspiratedusingmicropipettes.Fluorescentproteins

expressed are indicated above the panels. Note the

lack of accumulation of mCherry (A), RokK116A (C),

Rho1 (D), and ZipDmotor (F), but the accumulation

of Zip (arrow) in normal (B) and Ca2+-free medium

(E). (G) Quantification of protein accumulation at the

tip of aspirated cells. Background-subtracted

protein pixel intensities at the tip of the cell body

within the pipette (lp) and at the opposite pole of the

cell body (lo) were measured, and the ratio (lp/lo)

was calculated and used for statistical analysis.

***p < 10�4. Error bars indicate SEM.

(H–J) MyoII accumulation in response to me-

chanical stress revealed by AFM. (H) Schematic

drawing of the AFM experiments. Cells coex-

pressing RFP-Zip and GFP-Rho1 (I) or GFP-Zip

and RFP- RokK116A (I0) were imaged live over an

average time frame of �8 min. Stills of the movies

are shown. (I) The nudging cantilever induced a

rapid accumulation of Zip, but not Rho1, at the

sites of deformation. (I0 ) Zip accumulation in

response to the cantilever-imposed force pre-

ceded that of Rok. (J) The delay time of Zip

mechanosensory response. Note that cells re-

sponded rapidly (< 100 s) to the mechanical force

imposed by the cantilever.

(K–L0 0 ) The mechanosensory accumulation of

MyoII is dependent on its motor domain and the

C-terminal BTF assembly domain. RFP- ZipDmotor

or RFP-ZipDC was expressed in the receiving

S2R+ cells treated with Zip dsRNA. Note the

absence of any mechanosensory accumulation of

either Zip mutant (K and L).

(M–N0 0 ) A positive feedback loop between Rok and

MyoII. RFP-Zip or Venus-RokK116A was expressed

in the receiving S2R+ cells treated with Rok or Zip

dsRNA. The invasive F-actin foci were marked with

phalloidin staining (green inM0 andM0 0; red inN0 and
N0 0). Note the absence of Zip or Rok accumulation

in Rok (M–M0 0) or Zip (N–N0 0) knockdown cells.

Bars, 5 mm.

See also Movies S1 and S2.
S5B). Despite the absence of endogenous Duf or Rst in S2R+

cells, coexpressing MyoII (or Rok) with Eff-1 in the receiving cells

resulted in the accumulation of MyoII (87.3%of the cases, 48/55)

or Rok (81.4% of the cases, 35/43) at the fusogenic synapses

(Figures 4F and 4G). In contrast, Rho1 rarely accumulated in

receiving cells coexpressing Rho1 and Eff-1 (7.9% of the cases,

3/38) (Figure 4H). Taken together, results from both Drosophila

embryos and S2R+ cells support a Rho1-independent recruit-

ment ofMyoII at the site of intercellular invasion in cell-cell fusion.

MyoII Functions as a Mechanosensor Independently
of Rho and Rok
To directly test whether MyoII can respond to mechanical stimuli

independently of Rho1 and Rok, we used two complementary

biophysical methods, micropipette aspiration (MPA) and atomic
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force microscopy (AFM). In the MPA assay, a pulling force is

applied to the cell cortex via a micropipette (inner diameter,

5 mm), whereas a pushing force is applied to the cell cortex by

a cantilever (100 nm width) in the AFM experiments, closely

mimicking the mechanical force applied by PLS invasion in

cell-cell fusion both in the direction of the force and the length

scale of cortical deformation. Aspirating S2 cells expressing flu-

orescently tagged MyoII heavy chain (RFP-Zip) led to a rapid

RFP-Zip accumulation (reaching the peak level in less than

100 s) at the tip of the cell within the micropipette (Figures 5B

and 5G). In contrast, no fluorescent protein accumulation was

observed in cells expressing mCherry, Rok-RFP, or Rho1-GFP

within the time frame of these experiments (�10 min) (Figures

5A, 5C, 5D, and 5G). Similar mechanosensory response of MyoII

was observed with AFM. Specifically, applying a mechanical
Inc.



force to S2R+ cells plated on concanavalin-A-coated slides by

nudging the cantilever against the cell periphery induced a rapid

accumulation of RFP-Zip to the sites of deformation within tens

of seconds (Figures 5H–5J; Movie S1). In contrast, Rho1 showed

no accumulation in response to the pushing force (Figure 5I;

Movie S1), and Rok showed a delayed accumulation compared

to Zip (Figure 5I0; Movie S2). Thus, MyoII exhibits a rapid

mechanosensory response, and this initial mechanosensitive

accumulation occurs independent of Rho1-Rok accumulation.

Moreover, MyoII accumulation does not require calcium influx,

as it was unaffected by adding the calcium chelator EGTA in

the medium (Figures 5E and 5G). Taken together, these results

suggest that the rapid accumulation of MyoII likely results from

its intrinsic ability to sense the cortical stress independent of

Rho-Rok accumulation or calcium influx-mediated chemical

signaling.

To investigate how MyoII may sense the cortical stress in cell-

cell fusion, we characterized two Zipmutants for their localization

to the fusogenic synapse in S2R+ cells. One is a headlessmutant

(ZipDmotor), in which themotor domain was deleted, and the other

is a C-terminal truncationmutant (ZipDC), which carries a deletion

in the domain mediating MyoII bipolar thick filament (BTF) as-

sembly (Uehara et al., 2010). The headless ZipDmotor mutant did

not enrich at the fusogenic synapse (Figure 5K) and also failed

to accumulate in the MPA assay (Figures 5F and 5G). These re-

sults suggest that mechanosensory response of MyoII is depen-

dent on its ability to bind the actin filaments. In addition, ZipDC

also failed to enrich at the fusogenic synapse (Figure 5L). Thus,

the mechanosensory function of MyoII requires both actin bind-

ing and BTF assembly.

A Positive Feedback Loop between MyoII and Rok
Although MyoII exhibited a more rapid initial mechanosensitive

accumulation than Rok, they both showed steady-state enrich-

ment in the absence of Duf and Rho signaling at the fusogenic

synapse in Drosophila embryos and S2R+ cells. Therefore, we

tested whether the steady-state enrichment of MyoII and Rok

depends on each other. Knocking down Rok in the Eff-1-ex-

pressing receiving cells resulted in a failure of MyoII steady-state

accumulation to the fusogenic synapse (Figure 5M), suggesting

that Rok activity is required to maintain MyoII accumulation.

On the other hand, knocking down MyoII in the receiving cells

also abolished Rok accumulation (Figure 5N), indicating that

MyoII, which was recruited earlier than Rok by mechanical

force, forms a positive feedback loop with Rok to promote Rok

accumulation.

MyoII Accumulation Generates Cortical Resistance to
PLS Invasion
What is the cellular function of MyoII accumulation in cell-cell

fusion? Given MyoII’s role as a force generator, we reasoned

that MyoII accumulation in founder cells may increase cortical

tension/stiffness in these cells in response to the invasive force

generated by the PLSs from FCMs. This model predicts that

decreased MyoII activity in founder cells may enhance the pene-

tration of PLSs emanating from FCMs due to lessened cortical

resistance in the founder cells. Indeed, confocal and electron

microscopy revealed wider and/or deeper invasive protrusions

from FCMs into founder cells in embryos with reduced MyoII ac-
Devel
tivity (Figures 6A–6H). Specifically, while wild-type F-actin foci

have a round and dense morphology with an average depth of

invasion of 1.4 ± 0.3 mm (n = 30) (Figure 6A) and similar F-actin

foci were observed in dufrp mutant embryos (Figure 6D), the F-

actin-enriched structures between unfused FCMs and miniature

myotubes in rok; rho1, founder cell:: Rho1N19; rho1, and dufrp; zip

mutant embryos were irregularly shaped and exhibited clearly

discernable, abnormally long protrusions, with an average inva-

sion depth of 2.5 ± 0.9 mm (n = 26), 3.5 ± 1.2 mm (n = 31), and 2.3 ±

0.8 mm (n = 31), respectively (Figures 6B, 6C, and 6E). Electron

microscopy analysis revealed that wild-type FCMs projected

several finger-like protrusions containing densely packed actin

filaments (Figure 6F) (Sens et al., 2010). However, in founder

cell:: Rho1N19; rho1 embryos, abnormally wide and/or deep inva-

sive protrusions were observed at the tips of FCMs (Figures 6G

and 6H), consistent with the PLS morphology revealed by

confocal microscopy. Moreover, ribosomes and intracellular or-

ganelles were frequently observed within these abnormal protru-

sions (Figures 6G and 6H), indicating that the actin filaments

were loosely packed. The deeper protrusions propelled by

loosely packed actin filaments in these mutant embryos suggest

that founder cells with decreased MyoII activity have a less

elastic, softer cell cortex at the fusogenic synapse.

MyoII Activity Promotes Fusion Pore Formation
We have shown previously that actin-propelled invasive mem-

brane protrusions are required for fusion pore formation (Duan

et al., 2012; Jin et al., 2011; Sens et al., 2010; Shilagardi et al.,

2013). To test whether the abnormally deep protrusions in em-

bryos with reduced MyoII activity could promote fusion pore for-

mation, we performed aGFP diffusion assay. This assay is based

on the assumption that founder-cell-expressed cytoplasmic

GFP should diffuse into the apposing FCMs upon fusion pore for-

mation. In wild-type embryos, the originally teardrop-shaped

FCM rapidly integrates into a founder cell/myotube upon fusion

pore formation, making it difficult to visualize GFP diffusion

from a founder cell into a rapidly integrating FCM. However, in

fusion-defective mutants, unfused FCMs remain adherent to

founder cells (or miniature myotubes, if fusion is only partially

blocked), which should allow the visualization of GFP diffusion

into FCMs if small fusion pores have opened (but failed to

expand) between founder cells and the nonintegrating FCMs.

Therefore, we expressed cytoplasmic GFP in founder cells of

founder cell:: Rho1N19; rho1 embryos. As shown in Figures 6I

and 6J, the GFP signal was tightly retained in founder cells/mini-

ature myotubes of these embryos without diffusing into the

adherent, unfused FCMs, indicating the absence of small fusion

pores between founder cells/miniaturemyotubes and the fusion-

defective FCMs. These findings suggest that the cortical re-

sistance conferred byMyoII activation in founder cells is required

for fusion pore formation.

Cortical Tension in the Receiving Fusion Partner
Promotes Cell-Cell Fusion
Another prediction of the aforementionedmodel is that the fusion

defect caused by knocking downMyoII in the receiving cells may

be rescued by artificially increasing cortical tension in these cells

by other means. We tested this prediction by overexpressing

Fimbrin (Fim), an actin crosslinker in the receiving cells. To
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Figure 6. MyoII Activity Increases Cortical

Resistance Required for Fusion Pore For-

mation

(A–H)DeeperPLS invasion in embryoswith reduced

MyoII activity. (A–E0) Confocal images of F-actin foci

labeled by phalloidin staining in wild-type (WT)

(A and A0), rok; rho1 (B and B0), founder cell::

Rho1N19; rho1 (C andC0), dufrP (D andD0), and dufrP;

zip (E and E0) embryos. Muscle cell adhesion sites

labeled with a-Duf (blue) and FCMs are outlined by

dashed lines. Note the roundish morphology of the

F-actin focus inWT (A) anddufrP (D) but thewider (B)

and deeper (B, C, and E) protrusions in mutant

embryos. Arrowheads indicate the tips of invasive

protrusions. (F–H) Electron micrographs of the

invasive PLSs in WT (F) and founder cell::Rho1N19;

rho1 (G and H) embryos. FCMs invading founder

cells are pseudocolored in pink. The F-actin-en-

riched areas are demarcated by dashed lines,

based on the relatively low amount of ribosomes

and/or intracellular organelles in these areas

compared with the rest of the cell body. Note the

wider (G) and deeper (G and H) protrusions, as well

as the increasedamountof ribosomes (GandH)and

intracellular organelles (H) within the protrusions.

(I–I0 0 0) Fusion pores fail to form between muscle

cells with reducedMyoII activity. Cytoplasmic GFP

was coexpressed with Rho1N19 in founder cells of

rho1 mutant embryos stained with a-GFP (green),

phalloidin (red), and a-muscle MHC (blue). Note

that GFP in miniature myotubes (green in I and I0 0 0)
did not diffuse into the attached FCMs (arrows in I0 0

and I0 0 0), which invaded into themyotube with deep

protrusions (arrowheads in I0 and I0 0 0).
(J) The intensity of GFP signals in myotubes

versus the attached, mononucleate FCMs was

quantified (n = 22 myotube-FCM pairs). Error bar

indicates SEM.

Bars: (A–E and I) 5 mm; (F–H) 500 nm.
measure the cortical tension/stiffness of these cells, we again

applied two complementary methods, MPA and AFM, which

apply pulling and pushing forces to cells, respectively. For the

ease of measurements and calculations, the round-shaped S2

cells were used as receiving cells (expressing Eff-1), which could

fuse with the attacking S2R+ cells (coexpressing Sns and Eff-1)

to form heterokaryotic syncytia (Figure S5C). Using AFM tomea-

sure cortical stiffness, we found that Fim overexpression not only

increased the cortical stiffness of wild-type S2 cells but also

restored that of MyoII-knockdown cells to wild-type levels (Fig-

ures 7A and 7B). Similarly, an increase in cortical tension caused

by Fim overexpression in MyoII-knockdown cells was observed

using the MPA assay (Figures S5H and S5H’). It is important to

note that, although Fim overexpression did not affect membrane

protrusions (Figures S5I–S5L) or cell-cell fusion in normal cells

(Figure 7G; Figure S5G), it significantly rescued the fusion de-

fects caused by MyoII knockdown (Figures 7C–7G; Figures

S5C–S5G). Furthermore, Fim overexpression in the founder cells

of founder cell:: Rho1N19; rho1 embryos significantly rescued the

fusion defects in these embryos (Figures 7H–7K; Table S1).

Taken together, these results support a function for MyoII in

conferring cortical stiffness/tension in the receiving cells and

suggest that cortical stiffness/tension in the receiving cells pro-

motes plasma membrane fusion.
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DISCUSSION

In this study, we demonstrate a critical function of MyoII-medi-

ated cortical tension in cell-cell fusion. We show that MyoII func-

tions as amechanosensor in the receiving cells and accumulates

at the fusogenic synapse in response to the invasive force from

the attacking cells. The accumulated MyoII, in turn, increases

cortical stiffness/tension in the receiving cells to promote cell-

cell fusion.

MyoII Functions as a Mechanosensor in Cell-Cell Fusion
Unlike most in vivo mechanosensory systems, in which the sour-

ces and directions of the mechanical forces are difficult to

pinpoint, we have uncovered a simple mechanosensory system

composed of a clearly defined local force from an attacking cell

and a corresponding mechanosensory response in the receiving

cell during cell-cell fusion. This system makes it possible to un-

couple the chemical signaling mediated by cell adhesion mole-

cules and the mechanosensory response mediated by MyoII

and to address the question of what directs the initial accumula-

tion of MyoII to the fusogenic synapse. We found that, in both

Drosophila embryos and cultured cells, MyoII can be recruited

to, and activated at, the cortical region under the mechanical

stress imposed by PLS invasion, independent of Rho1 signaling
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Figure 7. Artificially Increasing Cortical

Tension in Receiving Cells with Decreased

MyoII Activity Rescues the Fusion Defect

and Models Describing the Mechanosensi-

tive Accumulation of MyoII and the Function

of Chemical Signaling in Cell-Cell Fusion

(A and B) AFM analysis of cortical stiffness. (A)

Schematic drawing of the AFM experiments. (B)

Measurement of cortical stiffness of S2 cells ex-

pressing Zip dsRNA and/or Fimbrin (Fim). KD,

knockdown; OE, overexpression. *p < 0.05 and

**p < 0.01. Error bars indicate SEM.

(C–G) Fim overexpression rescued the fusion

defect caused by Zip KD in the receiving cells.

(C–F) Schematic representations and confocal

images of cell-cell fusion in S2R+ cells. Attack-

ing cells expressing Sns, Eff-1, and UAS-

mCherry were mixed with receiving cells ex-

pressing Eff-1, ubiquitin (Ub)-GAL4, and Zip

dsRNA (D and F) or Venus-Fim (E and F). Cells

were stained with DAPI (nuclei; blue) and phal-

loidin (F-actin; green) (C and D). (G) Statistical

analysis of cell fusion. The fusion index was

calculated as percentage of the average nuclei

number in mCherry-positive syncytia (n > 65) in

(D), (E), or (F) versus that in (C). Fusion between

attacking and receiving cells was indicated by

mCherry expression in the multinucleate syncy-

tia (red). Bars, 5 mm.

(H–K) Fim overexpression in founder cells signifi-

cantly rescues the fusion defect in embryos with

decreased MyoII activity. Stage 15 founder

cell::Rho1N19; rho1 embryos were labeled as in

Figure 1. Arrowheads indicate unfused FCMs. The

fusion index was quantified in (K). Bar, 20 mm.

Error bars indicate SEM. ***p < 10�4.

(L) Cortical deformation by PLS invasion induces

MyoII accumulation. Prior to PLS invasion, the

cortical actin network is under less tension and

only a few MyoII BTF are present. During PLS

invasion, the protrusive force from the attacking

cell deforms the cortical actin network in the

receiving cell. Actin network deformation, in turn,

applies load to the bound MyoII BTFs and cause

MyoII stalling on the strained actin filaments.

More BTFs then cooperatively bind to these

strained actin filament, ultimately leading to the

accumulation of MyoII in response to the me-

chanical stress.

(M) Rho1 signaling mediated by cell adhesion

molecules enhances MyoII activation at the fuso-

genic synapse. In the absence of Duf-mediated

Rho1 accumulation/activation at the fusogenic

synapse, MyoII is activated by the basal level of Rok in the cytoplasm and forms a feedback loop with Rok. In the presence of Duf-mediated Rho1 signaling, more

freely diffusible MyoII are phosphorylated and activated, providing additional BTFs for binding to strained actin network.

See also Figure S5.
induced by cell adhesion molecules. Moreover, MyoII exhibits a

rapid mechanosensitive accumulation in response to externally

applied force in cultured cells, preceding that of Rok and

Rho1. These findings strongly support a role of MyoII as a direct

sensor for mechanical stress independent of chemical signaling

mediated by cell adhesion molecules and Rho1.

How does MyoII sense mechanical stress? Previous in vitro

studies of several myosins, including MyoII, have demonstrated

that mechanical resistance keeps myosin in the ADP-bound
Devel
state, locking the myosin motor on the actin filament (Kee and

Robinson, 2008; Kovács et al., 2007; Laakso et al., 2008; Purcell

et al., 2005). When stalled at the isomeric binding state, the

myosin motors can trigger cooperative binding of additional

freely diffusing myosin to the actin filament (Luo et al., 2012). In

this study, we find that the mechanosensory function of MyoII

is dependent on F-actin binding, since the headless mutant

does not show mechanosensitive accumulation either in the

cell-fusion culture system or in the MPA assay. Similar
opmental Cell 32, 561–573, March 9, 2015 ª2015 Elsevier Inc. 569



dependence of F-actin binding has been shown for MPA-

induced MyoII mechanosensitive accumulation in Dictyostelium

(Luo et al., 2012; Ren et al., 2009). We propose that, during cell-

cell fusion, the mechanical force imposed on the receiving cell

deforms and strains the cortical actin network, which, in turn, ap-

plies load on the actin-bound bipolar thick filaments of MyoII

(activated by the basal level of cytoplasmic Rho1 and Rok), lead-

ing to the stalling, cooperative binding, and, ultimately, mecha-

nosensitive accumulation of MyoII at the mechanically deformed

fusogenic synapse (Figure 7L). Thus, by sensing the strain in the

actin network, MyoII is repositioned to specific cellular locations

in response to mechanical stimuli. Based on our findings from

this simple mechanosensory system, we propose that mechan-

ical tension plays a general role in directing MyoII accumulation

to specific cellular locations in vivo.

Our study has also revealed an intimate coordination between

the mechanosensory response of MyoII and the chemical

signaling mediated by cell adhesion molecules. We show that

the initial accumulation of MyoII is stabilized by a positive feed-

back loop between Rok andMyoII. The coaccumulation of MyoII

and Rok at the fusogenic synapse in the absence of Rho1

signaling appears to be sufficient to induce a high percentage

of cell-cell fusion in cultured cells and to partially rescue the

myoblast fusion defect in duf,rst mutant embryos. However, in

wild-type embryos, more efficient cell-cell fusion (�11 min per

fusion event versus �30 min in cultured cells) (Richardson

et al., 2007; Shilagardi et al., 2013) does incorporate the input

from Rho1 signaling mediated by cell adhesion molecules. The

Rho1 accumulation and activation at the fusogenic synapse in

Drosophila embryos provides spatiotemporal coupling of Rho1

signaling to the fusion event. Such spatiotemporal coupling

helps generate more activated, freely diffusible MyoII mono-

mers, which are then available to participate in BTF assembly,

thereby amplifying the MyoII mechanosensory response at the

fusogenic synapse (Figure 7M).

Mechanical Tension Drives Cell Membrane Fusion
A critical barrier for fusing all biological membranes is to bring the

two membranes destined to fuse into close proximity. In cell-cell

fusion, the initial plasma membrane apposition is mediated by

cell adhesion molecules. However, cell adhesion is not sufficient

to induce cell-cell fusion, as demonstrated by studies in cultured

cells (Shilagardi et al., 2013). Consistent with this observation,

recent crystallographic studies have shown that Duf and Sns

form a rigid L-shaped structure that props the plasma mem-

branes �45 nm apart, a distance too large for membrane fusion

to occur (Özkan et al., 2014). To overcome this distance, cells uti-

lize an actin-based invasivemechanism, inwhich one cell (the at-

tacking cell) extends finger-like protrusions into its fusion partner

(the receiving cell), to push the plasma membranes into closer

proximity for fusogen engagement and fusion pore formation

(Sens et al., 2010; Shilagardi et al., 2013). Our current study dem-

onstrates that the protrusive force generated by the Arp2/

3-based actin polymerization from the attacking cell is counter-

acted by increased cortical tension/stiffness generated by the

actomyosin network in the receiving cells. This counteractive

force is critical for cell-cell fusion, since reducing cortical ten-

sion/stiffness in the receiving cell inhibits fusion, despite the

presence of long and deep protrusions from the attacking cell.
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The MyoII-mediated cortical tension in the receiving cell may

serve multiple roles in cell-cell fusion. First, it provides resistance

in the receiving cell so that its plasma membrane would not be

pushed away by the invasive protrusions from the attacking

cell, in effect promoting plasma membrane proximity. Second,

the cortical tension in the receiving cell may also provide a posi-

tive feedback to the actin network within the invasive protrusions

from the attacking cell. In support of this view, the ‘‘softer’’ cortex

of the MyoII-knockdown receiving cell is invaded by ‘‘weaker’’

protrusions propelled by loosely packed actin filaments, whereas

receiving cells with normal cortical stiffness are invaded by stiffer

protrusions propelled by densely packed actin filaments. In this

regard, it has been shown that mechanical stresses applied to

the actin networks induce network stiffening, through either the

engagement of more actin crosslinkers or an increase in Arp2/

3-based actin polymerization (Chaudhuri et al., 2007; Gardel

et al., 2004; Risca et al., 2012; Xu et al., 2000). Thus, pushing

against a stiff cortex of the receiving cell induces stiffness of the

invasive protrusions from the attacking cell, which, in turn, triggers

stronger mechanosensory response and cortical tension in the

receiving cell. We propose that this positive feedback between

a pair of mechanical forces—the protrusive force from the attack-

ing cell and the resisting force from the receiving cell—put the fu-

sogenic synapse under high mechanical tension, which helps to

overcome the energy barriers to bring the apposing cell mem-

branes into close proximity for fusion. Whether and how the

cortical tension generated by the asymmetric actin polymerization

and actomyosin contraction at the fusogenic synapse affects the

in-plane plasma membrane tension require future investigation.

Nevertheless, our analyses of both Drosophila myoblast fusion

and the reconstituted cell-fusion culture system suggest that

the interplay of mechanical forces between two fusion partners

is a general mechanism driving cell membrane fusion.

EXPERIMENTAL PROCEDURES

Fly Genetics

See the Supplemental Experimental Procedures for fly stocks used in this

study and fly crosses for gene expression and rescue experiments.

Immunohistochemistry

Fly embryos were fixed and stained as described elsewhere (Kim et al., 2007;

Sens et al., 2010). See the Supplemental Experimental Procedures for primary

and secondary antibodies used in this study. Fluorescent images were ob-

tained on an LSM 700 Meta confocal microscope (Zeiss), acquired with LSM

Image Browser software (Zeiss) and Zen software (Zeiss), and processed us-

ing Adobe Photoshop CS. For quantification of fluorescent signals, the signal

intensity of cellular areas of interest and control areas was measured using the

ImageJ program (http://imagej.nih.gov/ij/) and normalized by subtracting the

background intensity.

Molecular Biology

Full-length and partial cDNAs of rho1, zip, and fimwere amplified by PCR from

EST clones obtained from the Drosophila Genome Resource Center (DGRC).

All expression constructs were generated using pAc or pUAST vectors with

GFP, Venus, RFP, or hemagglutinin (HA) tags. See Supplemental Experimental

Procedures for double-stranded RNA (dsRNA) synthesis and purification.

Electron Microscopy

The high-pressure freezing and freeze substitution (HPF/FS) method was used

to fix fly embryos as described elsewhere (Sens et al., 2010; Zhang and Chen,

2008). See the Supplemental Experimental Procedures for details.
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Cell Culture, Transfection, RNAi, and Immunocytochemistry

S2R+ cells and S2 cells were cultured, fixed, and stained as described else-

where (Shilagardi et al., 2013). See the Supplemental Experimental Proce-

dures for details.

Rho1 Pull-Down Assay

GST-Rhotekin-RBD protein conjugated to agarose beads (Cytoskeleton) were

used to pull down GTP-bound Rho1 in S2R+ cells. See the Supplemental

Experimental Procedures for details.

Reconstitution of Cell-Cell Fusion in Cultured Cells

S2R+ cell fusion was induced as described elsewhere (Shilagardi et al., 2013).

Briefly, two groups of S2R+ cells (or a group of S2R+ cells and a group of S2

cells) were transfected independently in a six-well plate. The ‘‘attacking’’ cells

were transfected with Sns-V5, Eff-1-HA, and UAS-mCherry, and the

‘‘receiving’’ S2R+ (or S2 cells) were transfected with Eff-1-HA, Ub-GAL4,

and other appropriate constructs. Cells were incubated for 12–16 hr, washed,

and harvested by trypsinization and centrifugation. Harvested cells were

washed, resuspended, mixed with the appropriate group of fusion partners

at a 1:1 ratio, and seeded onto coverslips. The mixed cell populations were

fixed and stained at 48 hr after mixing. Intergroup cell fusion was monitored

by mCherry expression.

Micropipette Aspiration Assay

The MPA assay system was set up as described elsewhere (Effler et al., 2006;

Kee and Robinson, 2013; Ren et al., 2009). The suction pressure was applied

to the cell cortex with a polished glass pipette (�2.5 mm in radius, Rp). For

cortical tension measurements, the aspiration pressure was increased to the

equilibrium pressure (DP) at which the length of the cell inside the pipette

(Lp) was equal to Rp. The effective cortical tension (Teff) was determined by

the Young-Laplace equation: Dp = 2Teff(1/Rp � 1/Rc), where Rc is the radius

of the cell and DP is the equilibrium pressure when Lp = Rp (Derganc et al.,

2000; Octtaviani et al., 2006). For mechanosensory response studies, each

cell was aspirated for at least 10 min to ensure enough time for mechanosen-

sitive protein accumulation. Epifluorescence images were taken to monitor the

protein localization during MPA. Cells were imaged using an Olympus 1X81

microscope with a 403 (NA, 1.3) objective with 1.63 Optovar. All images

were acquired using the MetaMorph Software (Molecular Devices) and pro-

cessed using ImageJ program. Background-subtracted protein pixel inten-

sities at the tip of the cell body within the pipette and at the opposite pole of

the cell body were measured, and the ratio was calculated and used for statis-

tical analysis. Statistical analysis was performed using KaleidaGraph (Synergy

Software). An ANOVA with Fisher’s least significant difference post hoc test

was applied. Only p values less than 0.05 were considered significant.

Atomic Force Microscopy

Experiments were conducted at room temperature using a BioScope Catalyst

Atomic Force Microscope (Bruker AXS) with a sample stage mounted atop an

inverted optical microscope (Zeiss Axio Observer Z1, Carl Zeiss). Data acqui-

sition and atomic force microscopy (AFM) control were performed using the

NanoScope software (Bruker). MLCT-C cantilevers (Bruker) with a nominal

spring constant of 10 pN/nm were used in all experiments. The actual spring

constant of each cantilever was determined by thermal calibration in air. Prior

to the cortical stiffness measurement, S2 cells were plated on a glass coverslip

coated with high-molecular-weight poly-L-lysine (Sigma), which immobilized

cells without spreading. Cells were indented at the rate of 100 nm/s to avoid

contribution of viscosity on elasticity measurements. The Young’s Modulus

of elasticity was calculated by fitting the cantilever deflection versus piezo

extension curves to the modified Hertz model as described elsewhere (Rose-

nbluth et al., 2006), using a custom-written algorithm in MATLAB (Mathworks).

Student’s t test was used to determine whether the differences in average

elasticities were statistically significant.

For lateral indentation experiments, S2R+ cells were plated on glass cover-

slips coated with concanavalin A (Sigma) and transfected with fluorescently

tagged Zip, RokK116A, or Rho1 using Effectene (QIAGEN). Lateral indentation

experiments were conducted 3 days after transfection. To determine the effect

of a localized mechanical force on Zip, RokK116A, or Rho1 localization, the

cantilever (100-nm width) (MLCT or DNP with a pyramidal tip, Bruker) was first
Devel
brought into full contact, at around 50 nN setpoint force, with the glass surface

on a cell-free area within 10 mm from a target cell. Next, the cell was laterally

translated into the stationary cantilever using the piezoelectric XY stage and

the NanoScope software (Bruker). The cantilever tip indented the edge of

the cell by 2–5 mm. Cells were simultaneously imaged by epifluorescence

with a plan-apochromat 1003/1.46 NA oil immersion objective (Zeiss). Time-

lapse images were taken at 2-s intervals using the Micro-Manager software

(http://micro-manager.org/wiki/Micro-Manager).
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Jahn, R., and Südhof, T.C. (1999). Membrane fusion and exocytosis. Annu.

Rev. Biochem. 68, 863–911.

Jahn, R., and Fasshauer, D. (2012). Molecular machines governing exocytosis

of synaptic vesicles. Nature 490, 201–207.

Jin, P., Duan, R., Luo, F., Zhang, G., Hong, S.N., and Chen, E.H. (2011).

Competition between Blown fuse andWASP for WIP binding regulates the dy-

namics of WASP-dependent actin polymerization in vivo. Dev. Cell 20,

623–638.

Kee, Y.S., and Robinson, D.N. (2008). Motor proteins: myosin mechanosen-

sors. Curr. Biol. 18, R860–R862.

Kee, Y.S., and Robinson, D.N. (2013). Micropipette aspiration for studying

cellular mechanosensory responses and mechanics. Methods Mol. Biol.

983, 367–382.

Kielian, M., and Rey, F.A. (2006). Virus membrane-fusion proteins: more than

one way to make a hairpin. Nat. Rev. Microbiol. 4, 67–76.

Kim, S., Shilagardi, K., Zhang, S., Hong, S.N., Sens, K.L., Bo, J., Gonzalez,

G.A., and Chen, E.H. (2007). A critical function for the actin cytoskeleton in tar-

geted exocytosis of prefusion vesicles during myoblast fusion. Dev. Cell 12,

571–586.
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