Ready; Catalysis
Kinetics-1
There are only two important things in chemistry, kinetics and thermodynamics.
And, $\exp (-\Delta G / R T)=k_{1} / k_{-1}$, so there' s really only one thing.
Kinetics provides information about the transition state of a reaction.
We'll use a simple example to learn the basic tools, then look at more applications to catalysis.
$1^{\text {st }}$ step: measure change in concentration over time under known conditions.

Common techniques:
GC
UV/Vis
NMR
IR
HPLC

Note: data for EtCN are hypothetical

>	Ready; Catalysis \quad Kinetics-3

2 common methods to determine order in individual components.
Pseudo $1^{\text {st }}$-order: one component in huge excess (its concentration ~ constant)
Collect data at various excessive concentrations

Note $[\mathrm{EtI}]=1 \rightarrow 0$, but $[\mathrm{NaCN}]=10 \rightarrow 9$ up to $200 \rightarrow 199$
Rate $=\mathrm{k}[\mathrm{NaCN}][\mathrm{Etl}] \sim \mathrm{k}[\mathrm{NaCN}]_{0}[\mathrm{EtI}]=\mathrm{k}_{\mathrm{obs}}[\mathrm{EtI}]$

Ready; Catalysis Kinetics-5
An alternative is the method of 'initial rates'
Keep one component constant (EtI) and vary the other (NaCN), but keep close to synthetic conditions

Look at the first 10% of the reaction. Assume concentrations don' t change much at low conversion. i.e. $v=k[E t \mid][\mathrm{NaCN}] \sim \mathrm{k}[\mathrm{Et}]_{0}[\mathrm{NaCN}]_{0(\mathrm{c}=0 \rightarrow 10 \%)}$

Ready; Catalysis Kinetics-6	
	Notes Need more data points/time for initial rate Data looks pretty linear for first 10\% Slope of best-fit line is kobs Kobs $=k[\mathrm{NaCN}][\mathrm{EtI}]$ and [Etl] was constant Again, the rxn is first order in [NaCN] But...we ignored 90% of the reaction.

Figure 2. Dependence upon [THF] of k_{1} for reaction of 1 with PMePh_{2}, determined in studies using 0.01 M 1 and varying excess concentrations of phosphine in THF/2,5-Me ${ }_{2}$ THF mixtures

Ready; Catalysis Kinetics-11
 Case Study 2: Corey, JACS, 1996, 319

These are saturation kinetics!!. Same as many enzymes and Lewis-Acid cat Rxns

Saturation kinetics with epoxide
Inhibition by PhOH


```
Ready; Catalysis Kinetics-17
Case Study 5: Stahl, JACS 2002, 766
The rxn
```



```
(2)
```

The data: DMSO critical, but is not reduced (O 2 required) or oxidized (no dimethyl sulfone is formed)
$\underline{\mathbf{2}}$ formed: O_{2} consumed $=2\left(\mathrm{O}_{2}\right.$ is a 4 e - oxidant here $)$

Under the rxn conditions, disproportionation observed (sometimes referred to as 'catalase activity')

$$
\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{[\mathrm{Pd}]} \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}
$$

(5)

Pd black (precipitated Pd metal) observed during course of reaction

Ready; Catalysis Kinetics-18

Case Study 5: Stahl, JACS 2002, 766

Also: Pd black correlates with rate decrease
Rate independent of [ROH]
Conclude oxidation of Pd is rate limiting
Predicts rate $=k[O 2][P d]$ (i.e. linear increase in rate with $[P d]$)

Propose catalyst decomposition is time-dependent. Decomposition is bimolecular; more pronounced at higher [Pd]
Described by $\mathrm{k}_{\text {dec }}$ competitive with $\mathrm{k}_{\text {cat }}$
Eq 7 models data in trace B

$$
\begin{equation*}
\frac{d\left(p \mathrm{O}_{2}\right)}{d t}=k_{\mathrm{cat}}[\mathrm{Pd}]_{t} \cdot \mathrm{O}_{2} ; \quad[\mathrm{Pd}]_{t}=\frac{[\mathrm{Pd}]_{0}}{1+[\mathrm{Pd}]_{0}\left(k_{\mathrm{dec}} \cdot t\right)} \tag{7}
\end{equation*}
$$

Ready; Catalysis
Kinetics-20
Case Study 6: Foa et al., J. Chem Soc. Dalton, 1975, 2572.
The rxn

The data

Ready; Catalysis
Coates, JACS, $2007, ~ 4948$

Anhydride formation displays induction period; no anhydride formed until epoxide consumed. Independent rxns similar in rate; show first order dependence on catalyst

Ready; Catalysis

Hartwig, Science, 307, 2005, 1082
Determine the mechanism for oxidative addition of ammonia to $\operatorname{Ir}(\mathrm{I})$ olefin complex

Scheme 4.

Data:
Rxn with $N D_{3}$ showed no D incorporation into ligand

Figure S2. Plot of k_{obs} for the oxidative addition of ammonia and the ratio of the concentrations of pentene and ammonia that includes all data points.

