pKa's. Numbers are approximations for outside the range -2-16, but useful to know.
For an extensive list, see http://www.chem.wisc.edu/areas/reich/pkatable/

Substrate	$\mathrm{H}_{2} \mathrm{O}$	DMSO	Substrate	$\mathrm{H}_{2} \mathrm{O}$	DMSO
Inorganics			EWG-CH		
$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	-14		O		
HCl	-8			9	13
$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	-3	2	O		
$\mathrm{H}_{3} \mathrm{O}+$	-2		EtO	11	14
$\mathrm{NH}_{4} \mathrm{Cl}$	9		0		
$\mathrm{H}_{2} \mathrm{O}$	16		tO	13	16
Organic $X-H$			NO_{2}	10	17
$\mathrm{H}_{\mathrm{O}^{+}}$	-6			20	27
$\mathrm{Ph} \mathrm{CH}_{3}$					
$\mathrm{Me}_{2} \mathrm{OH}+$	-4			25	30
AcOH	5	12			
NH^{+}	5	3			35
PhOH	10	18		33	35
	15	26	Hydrocarb		
				50	
MeOH	16	28			
tBuOH	17	29		44	
$(\mathrm{iPr})_{2} \mathrm{NH}$		36		23	
NH_{3}	38	41		35	

Bond Strength. Take from Lowry and Richardson; by definition, $\Delta \mathrm{H}$ for: $\mathrm{A}-\mathrm{B} \longrightarrow \mathrm{A}^{\bullet}+\mathrm{B}^{\bullet}$

Hydrogen bond | BDE $(\mathrm{Kcal} / \mathrm{mol})$ | |
| :---: | :---: |
| $\mathrm{X}---\mathrm{H}$ | 28 |
| $\mathrm{H}-\mathrm{H}$ | 103 |
| $2-102$ | |

$$
\begin{aligned}
& \text { BDE (Kcal/mol) } \\
& \begin{array}{l}
\text { for a large list of BDE's see Prof. Thomas Lectka's web page: } \\
\text { http://www.jhu.edu/chem/lectka/Bond\%20Strengths. html }
\end{array} \\
& \hline
\end{aligned}
$$

Strain energy (energetic penalty for indicated strain)
Strain

Kinetics and Thermodynamics

equilibrium processes
key equation: $\Delta \mathrm{G}=-\mathrm{RT} \operatorname{Ln}(\mathrm{K})$
for $K=10, T=298, \Delta \mathbf{G}=\mathbf{- 1 . 4 k c a l}$
$K=100, T=298 \Delta G=-2.8 \mathrm{kcal}$
i.e. for every 1.4 kc al difference in energy there
is an order of magnitude change in $\mathrm{K}_{\text {eq }}$
reaction rate
2nd key equation
$k=\frac{k_{B} T}{h} \exp \left(\frac{-\Delta G^{\ddagger}}{R T}\right) \quad$ or $\quad \Delta G^{\ddagger}=-R T L n \quad \begin{gathered}k h \\ k_{B} T\end{gathered}$
$\mathrm{k}=$ rate constant
h = Plank's constant
$\mathrm{kb}=$ Boltzmann's constant
$-\Delta G^{\ddagger}=$ free energy difference between ground state and transition state
for $\mathrm{T}=298, \mathrm{k}=1 \mathrm{~s}^{-1}$
$\Delta G^{\ddagger}=17.5 \mathrm{kcal} / \mathrm{mol}$
i.e. activation energy for rxn occuring once a second is 17.5

As above, if $\mathrm{k}=10 \mathrm{~s}-1, \Delta \mathrm{G}^{\ddagger}=17.5-1.4=16.1$
For $\mathrm{T}=308$ and $\Delta \mathrm{G}^{\ddagger}=17.5, \mathrm{k}=2.5 \mathrm{~s}^{-1}$
i.e. increase in temp of 10 K gives ~ 2.5 fold increase in rate

relative rates

for a system with 2 possible reaction pathways (e.g. kinetic enolization or asymmetric catalysis) for
$\mathrm{k}_{\text {fast }} / \mathrm{k}_{\text {slow }}=10$ (would give 82% ee), $\Delta \Delta \mathbf{G}^{\ddagger}=1.4 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{k}_{\text {fast }} / \mathrm{k}_{\text {slow }}=100$ (would give 99% ee), $\Delta \Delta \mathbf{G}^{\ddagger}=\mathbf{2 . 8} \mathbf{k c a l} / \mathbf{m o l}$

Bond distances

len (angstroms $\left[10^{-10} \mathrm{~m}\right]$)

