Substrate	H ₂ O	DMSO	Substrate	H ₂ O	DMSO
Inorganics			EWG-CH		
CF ₃ SO ₃ H	-14		O O	9	10
HCI	-8			9	13
CH₃SO₃H	-3	2	O O	11	14
H ₃ O+	-2		EtO		14
NH ₄ CI	9		O O 	40	16
H ₂ O	16		EtO	13	10
Organic X-H			NO ₂ -CH ₃	10	17
H _O + H CH ₃	-6		O V	20	27
0	4		0		
Me ₂ OH+ AcOH	-4 5	10	t-BuO	25	30
ACOH		12	Q		
	5	3	Me ₂ N		35
PhOH	10	18	- 0 - S	33	35
о "Ц _N "н	15	26	Hydrocarbons		
Н	4.0		H ₃ C—́	50	
MeOH	16	28			
tBuOH	17	29	—\	44	
(iPr) ₂ NH		36	R- H	23	
NH ₃	38	41	H–H	35	

pKa's. Numbers are approximations for outside the range -2 - 16, but useful to know. For an extensive list, see http://www.chem.wisc.edu/areas/reich/pkatable/

Bond Strength. Take from Lowry and Richardson; by definition, ΔH for: $A-B \longrightarrow A^{\bullet} + B^{\bullet}$

Bond	BDE (Kcal/mol)	Bond	BDE (Kcal/mol)
H	98	>-он	84
Η	103		
≡-н	125) o	172 (2nd bond = 88)
Η Η	85	Ť /	24
CI	82		81
Br	69		148 (2nd bond = 67)
	54	∕ ∱ ∖	
HO-H	119	I	
HO ₂ -H	90		194 (3rd bond = 46)
НО-ОН	50		
H–H	104		E's see Prof. Thomas Lectka's web page: hem/lectka/Bond%20Strengths.html
Hydrogen bond XH	2-10		

Strain energy	(energetic penalty	y for indicated strain)
---------------	--------------------	-------------------------

		, 	
Strain	Penalty (kcal/mol)	Strain	Penalty (kcal/mol)
H ₃ C H ₃ C H H H	0.8	ring strain > or ⊃o	28
H H ₃ CCH ₃ CH eclipse	ed 2.2	or O	26
H		\bigcirc	6
CH ₃ syn-pe	ntane 3.7		0
olefin conformations		\checkmark	
for H ₃ C CH ₃			6
H ₃ C ₁ C _H	A _{1,2} 2.7		

Kinetics and Thermodynamics

H₃C

equilibrium processes

key equation: $\Delta G = -RTLn(K)$

for K = 10, T = 298, ΔG = -1.4kcal K = 100, T = 298 ΔG = -2.8kcal i.e. for every 1.4kcal difference in energy there is an order of magnitude change in K_{eq}

A_{1,3}

3.9

reaction rate

2nd key equation

$$k = \frac{k_B T}{h} \exp\left(\frac{-\Delta G^{\ddagger}}{RT}\right)$$
 or $\Delta G^{\ddagger} = -RTLn \frac{kh}{k_B T}$

for T = 298, k = $1s^{-1}$ $\Delta G^{\ddagger} = 17.5$ kcal/mol

i.e. activation energy for rxn occuring once a second is 17.5 As above, if k = 10s-1, ΔG^{\ddagger} = 17.5 - 1.4 = 16.1

For T = 308 and ΔG^{\ddagger} = 17.5, k = 2.5s⁻¹ i.e. increase in temp of 10K gives ~2.5 fold increase in rate

relative rates

for a system with 2 possible reaction pathways (e.g. kinetic enolization or asymmetric catalysis) for $k_{fast}/k_{slow} = 10$ (would give 82% ee), $\Delta\Delta G^{\ddagger} = 1.4kcal/mol$ $k_{fast}/k_{slow} = 100$ (would give 99% ee), $\Delta\Delta G^{\ddagger} = 2.8kcal/mol$

 $\label{eq:k} \begin{array}{l} \mathsf{k} = \mathsf{rate \ constant} \\ \mathsf{h} = \mathsf{Plank's \ constant} \\ \mathsf{kb} = \mathsf{Boltzmann's \ constant} \\ -\Delta \mathsf{G}^{\ddagger} = \mathsf{free \ energy \ difference \ between} \\ \mathsf{ground \ state \ and \ transition \ state} \end{array}$

Bond distances

bond	length (angstroms [10 ⁻¹⁰ m])
∕_он	1.43
o	1.23
\rightarrow	1.53
$\rightarrow \neq \langle$	1.34
_ <u></u>	1.20
Н Н₃С—∕	1.1
H H₃C−Ó	0.97
X H (hydrogen bond)	1.5 - 2.4