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The mechanical properties of cells are dynamically controlled 
in many cellular processes, such as cell division, fusion, migra-
tion, invasion and shape change. Spectrin is best known as a 

membrane skeletal protein that is critical for maintaining cell shape 
and providing mechanical support for the plasma membrane1–3. 
The functional unit of spectrin is a flexible, chain-like heterotetra-
mer composed of two antiparallel heterodimers of α​-spectrin and  
β​-spectrin that interact head to head to form a tetramer1–3. Whereas 
vertebrates have two α​-spectrins (α​I and α​II) and five β​-spectrins 
(β​I–β​V), invertebrates encode one α​-spectrin and two β​-spec-
trins (β​ and β​Heavy (β​H)). In erythrocytes and neurons, spectrins, 
together with actin, ankyrin and associated proteins, form either 
a static polygonal lattice structure4–6 or an ordered periodic longi-
tudinal array7 underneath the plasma membrane to protect cells 
from mechanical damage8. Such a mechanoprotective function of 
spectrin is made possible by holding the spectrin network under 
constitutive tension9. However, in many cellular processes, mechan-
ical tension is generated upon transient cell–cell interactions. How 
spectrins, which are expressed in most eukaryotic cells, respond to 
transient mechanical stimuli in dynamic cellular processes remains 
largely unknown.

Cell–cell fusion is a dynamic process that occurs in fertiliza-
tion, immune response, bone resorption, placenta formation and 
skeletal muscle development and regeneration10,11. Studies in vari-
ous cell fusion events from Drosophila to mammals have demon-
strated that cell fusion is an asymmetric process12–17. At the site of 
fusion, known as the fusogenic synapse, an attacking fusion partner 
invades its receiving fusion partner with actin-propelled membrane 

protrusions12–14,16,17, whereas the receiving fusion partner mounts 
a myosin II (MyoII)-mediated mechanosensory response14. The 
pushing and resisting forces from the two fusion partners bring the 
two cell membranes into close proximity and put the fusogenic syn-
apse under high mechanical tension to promote fusogen engage-
ment and cell membrane merger13,14. Although multiple long and 
narrow invasive protrusions from the attacking fusion partner are 
known to be required for cell–cell fusion12,13,18,19, it is unclear how 
these protrusions are spatially constricted and shaped to generate 
high mechanical tension at the fusogenic synapse.

Results
α/βH-Spectrin is required for Drosophila myoblast fusion. In a 
deficiency screen for genes required for myoblast fusion, we uncov-
ered Df(3L)1226. Genetic analyses of candidate genes within this 
deficiency led to the identification of βH-spectrin (also known as 
karst or kst)20,21. Zygotic null mutants of α-spectrin or βH-spectrin 
exhibited minor myoblast fusion defects (Fig. 1Aa–Ad,B), probably 
owing to maternal contribution. The α/βH-spectrin double mutant 
showed a severe fusion defect (Fig. 1Ae,B), which suggests that α​
/β​H-spectrin heterotetramer formation was significantly compro-
mised when the concentrations of both α​-spectrin and β​H-spectrin 
were low. The functional specificity of α​/β​H-spectrin in myoblast 
fusion was demonstrated by a genetic rescue experiment, in which 
full-length β​H-spectrin expressed in all muscle cells rescued the 
fusion defect in the βH-spectrin mutant (Fig. 1Ag,B). By contrast, 
overexpressing dominant-negative β​H-spectrin (mini-β​H-spectrin; 
deleting 15 of the 29 spectrin repeats)22 or β​-spectrin containing 17 
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spectrin repeats23 in muscle cells exacerbated the fusion defect of 
the βH-spectrin mutant (Fig. 1Af,B and Supplementary Fig. 1a) and 
caused a minor fusion defect in wild-type embryos (Supplementary 
Fig. 1a). Thus, both mini-β​H-spectrin and β​-spectrin interfere 
with α​/β​H-spectrin heterotetramer formation and disrupt the  

α​/β​H-spectrin network. Moreover, β​H-spectrin expression specifi-
cally in the receiving fusion partners (muscle founder cells), but 
not in the attacking cells (fusion-competent myoblasts (FCMs)), 
rescued the fusion defect (Fig. 1Ah,Ai), demonstrating that α​/β​H- 
spectrin functions specifically in founder cells.
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Fig. 1 | α/βH-Spectrin is required for myoblast fusion and is enriched at the fusogenic synapse in founder cells. A, Myoblast fusion phenotype in the  
α/βH-spectrin mutant. Stage 15 embryos immunolabelled with anti-muscle MHC. Ventral lateral muscles of three hemisegments are shown in each panel. 
Unfused myoblasts are indicated by arrowheads. A wild-type (WT) embryo is shown (Aa). A minor fusion defect is demonstrated in the α-spectrin 
(α-spec–/–) (Ab), βH-spectrin (βH-spec–/–) (Ac) and transheterozygous βH-spec–/Df(3 L)1266 (Ad) mutants. A severe fusion defect is shown in the  
α/βH-spectrin–/– (α-spec–/– βH-spec–/–) double mutant (Ae). Expressing mini-β​H-spectrin (mini-β​H-spec) in all muscle cells with twi-GAL4 exacerbated 
the fusion defect in the βH-spec–/– mutant (Af). The fusion defect in the βH-spec–/– mutant was rescued by expressing βH-spectrin in all muscle cells with 
twi-GAL4 (Ag), in founder cells with rP298-GAL4 (Ah), but not in FCMs with sns-GAL4 (Ai). For each genotype, 10 embryos (biologically independent 
samples) were imaged with similar results. Scale bar, 20 μ​m. B, Quantification of the fusion index. The number of Eve-positive nuclei in the dorsal acute 
muscle 1 (DA1) was counted for each genotype in A. The number of DA1 analysed for each genotype: n =​ 42, 17, 45, 45, 55, 45, 42, 42 and 42 (left to 
right). The red horizontal bars indicate the mean values. Significance was determined by the two-tailed Student’s t-test. C, Localization of α​/β​H-spectrin at 
the fusogenic synapse. Confocal images of side-by-side pairs of FCM (outlined with dashed lines in the merge panels) and the founder cell in stage 13–14 
embryos triple labelled with phalloidin (F-actin), anti-Duf, and anti-α​-spectrin (Ca), anti-β​H-spectrin (Cb), anti-Flag (GFP/Flag trap line; Cc), anti-GFP (YFP 
trap line; Cd), or anti-V5 (V5-β​H-spectrin expressed in founder cells with rP298-GAL4 (Ce) or FCMs with sns-GAL4 (Cf)). The expression of β​H-spectrin 
in FCMs was visualized in the fusion-defective sltr mutant without β​H-spectrin diffusion from FCMs to founder cells. Note the enrichment of α​-spectrin 
(Ca) and β​H-spectrin (Cb–Cd) at the fusogenic synapse (arrowheads) and specifically in founder cells (Ce), but not in FCMs (Cf). For each genotype, 20 
fusogenic synapses (biologically independent samples) were imaged with similar results. Scale bar, 5 μ​m.
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α/βH-Spectrin enrichment at the fusogenic synapse in founder 
cells. To determine the subcellular localization of α​/β​H-spectrin, we 
performed antibody-labelling experiments using anti-α​-spectrin 
and anti-β​H-spectrin in wild-type embryos (Fig. 1Ca,Cb), and anti-
Flag and anti-green fluorescent protein (GFP) in two protein trap 
lines, kstMI03134 (Fig. 1Cc) and kstCPTI002266 (Fig. 1Cd). Both α​-spectrin 
and β​H-spectrin were enriched at the fusogenic synapse, largely co-
localizing with Dumbfounded (Duf), an immunoglobulin domain-
containing founder cell-adhesion molecule (CAM)24, and closely 
associating with the FCM-specific F-actin focus, which is part of 
an invasive podosome-like structure (PLS)4. By contrast, β​-spectrin 
was not detected in muscle cells, despite its high expression in epi-
thelial cells (Supplementary Fig. 1b). Ectopically expressed β​-spec-
trin in muscle cells did not enrich at the fusogenic synapse as did 
α​/β​H-spectrin and mini-β​H-spectrin (Fig. 1C and Supplementary 
Fig. 1e,f). In addition, two of the major accessory proteins that 
are known to stabilize spectrin–actin interactions, adducin25 and 

protein 4.1 (refs 26,27), were also absent at the fusogenic synapse 
(Supplementary Fig. 1c,d). An amino-terminal-tagged, func-
tional β​H-spectrin (V5-β​H-spectrin) that was specifically expressed 
in founder cells, but not in FCMs, was enriched at the fusogenic  
synapse (Fig. 1Ce,Cf), supporting the functional requirement for  
α​/β​H-spectrin in founder cells.

Dynamic accumulation of α/βH-spectrin at the fusogenic syn-
apse. To investigate whether α​/β​H-spectrin forms a stable mem-
brane skeletal network at the fusogenic synapse, we performed 
live-imaging experiments in Drosophila embryos. Surprisingly, 
instead of forming a static network, mCherry-β​H-spectrin exhib-
ited dynamic accumulation and dissolution at the fusogenic syn-
apse accompanying the appearance and disappearance of the  
FCM-specific F-actin focus (lifespan: 6–30 min, average: ~12 min28) 
(Fig. 2a,b and Supplementary Video 1). The amount of β​H-spectrin 
accumulation correlated with the density and invasiveness of the 
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Fig. 2 | α/βH-Spectrin dynamically accumulates at the fusogenic synapse in response to PLS invasion. a–d, Time-lapse stills of stage 14 WT (a,b) or dpak3-
mutant (c,d) embryos expressing GFP-actin and mCherry-β​H-spectrin. The fluorescence intensity of F-actin foci and β​H-spectrin accumulation is displayed by 
heatmaps (b,d) on a scale from 0 to 255. The dashed outlines (b,d) delineate F-actin foci and β​H-spectrin accumulation at the fusogenic synapse. The mean 
fluorescence intensity in the outlined area is shown in each panel. Note the dynamic changes in the intensity and morphology of β​H-spectrin accumulation 
correlating with those of the F-actin foci. For each genotype, 10 fusogenic synapses were live imaged with similar results. Scale bars, 5 μ​m. e,f, FRAP of  
β​H-spectrin at the fusogenic synapse. Time-lapse stills of a representative FRAP experiment in a stage 14 WT embryo expressing GFP-actin and mCherry-β​H-
spectrin (e). Arrowhead indicates the photobleached region. Scale bar, 5 μ​m. Recovery kinetics of the mCherry fluorescence after photobleaching are  
shown (f). The curve on the left shows the fluorescence recovery of mCherry-β​H-spectrin in panel e. The recovery t1/2 and percentage were quantified from 
multiple experiments. Each data point represents a fusogenic synapse; n =​ 18 fusogenic synapses were analysed by FRAP. The horizontal bars represent the 
median value. The average t1/2 was 66 ±​ 35 s (median: 55 s) and the average percentage recovery was 67 ±​ 14% (median: 68%).
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F-actin foci, with a higher accumulation in wild-type embryos  
(Fig. 2a,b and Supplementary Video 1) and an overall weaker 
accumulation in the dpak3 mutant, in which actin foci are loosely 
packed and less invasive19 (Fig. 2c,d and Supplementary Video 2). 
Thus, spectrin forms a transient and dynamic structure that rap-
idly changes its density and morphology corresponding to the 
invasiveness of the PLS. The dynamic behaviour of β​H-spectrin 
at the fusogenic synapse was confirmed by fluorescence recovery 
after photobleaching (FRAP). The fluorescence of photobleached 
mCherry-β​H-spectrin rapidly recovered with an average half-
time (t1/2) of 66 ±​ 35 s, similar to that of the F-actin foci in FCMs 
(70 ±​ 18 s)12, and eventually reached 67 ±​ 14% of the pre-bleaching 
level (Fig. 2e,f and Supplementary Video 3). Thus, PLS invasion 
and α​/β​H-spectrin accumulation were temporally coordinated and 
new α​/β​H-spectrin heterotetramers were continuously recruited 
to the fusogenic synapse in response to PLS invasion. Moreover, 
FRAP analysis of mCherry-β​H-spectrin expressed in epithelial cells 
showed fluorescence recovery to a similar level, albeit at a slower 
rate, probably due to the different mechanical properties of the two 
cellular environments (Supplementary Fig. 2 and Supplementary 
Video 4). Taken together, the dynamic behaviour of β​H-spectrin is 
not restricted to muscle cells and is a general feature of this protein.

α/βH-Spectrin accumulates at the fusogenic synapse in the 
absence of chemical signalling. Given the correlation between 
spectrin accumulation and PLS invasiveness, we tested whether  
β​H-spectrin accumulation at the fusogenic synapse is triggered by 
the protrusive force from FCMs or recruited by the founder-cell 
CAMs, Duf and its functionally redundant paralogue Roughest 
(Rst)24,29. Remarkably, β​H-spectrin still accumulated at fusogenic 
synapses in the duf, rst double mutant expressing Duf that lacks its 
entire intracellular domain (DufΔ​intra) (Fig. 3A,Ba,Bb,C). DufΔ​
intra does not transduce chemical signals but functions normally 

to attract the FCM-specific immunoglobulin domain-containing 
CAM, Sticks and stones (Sns)30–32. The overall weaker accumulation 
of β​H-spectrin in these mutant embryos corresponds to a partial 
rescue of myoblast fusion33 (Fig. 3C). By contrast, Antisocial (Ants; 
also known as Rols7), a founder cell-specific adaptor protein that 
binds to the intracellular domain of Duf34–37, did not accumulate at 
the fusogenic synapse (Fig. 3Ba,Bc,C). Thus, β​H-spectrin accumula-
tion in founder cells can be triggered by invasive forces from the 
PLS, independent of chemical signalling from CAMs. Furthermore, 
β​H-spectrin accumulated at the fusogenic synapse in cultured 
Drosophila S2R+​ cells that were induced to fuse by co-express-
ing Sns and the Caenorhabditis elegans fusogen Eff-1 (refs 13,38).  
Specifically, the F-actin foci in the attacking cells were always asso-
ciated with β​H-spectrin accumulation in the receiving cells, despite 
the lack of endogenous Duf and Rst in these cells13 (Fig. 3D).

α/βH-Spectrin exhibits mechanosensitive accumulation. To 
test directly whether β​H-spectrin exhibits mechanosensitive accu-
mulation, we performed micropipette aspiration (MPA) assays, 
in which a pulling force is applied to Drosophila S2 cells by a 
micropipette. GFP-β​H-spectrin showed rapid mechanosensitive 
accumulation at the base area of the aspirated portion of the cell  
(Fig. 4A,D), in contrast to the previously demonstrated tip accu-
mulation of the mechanosensory protein MyoII14. This effect was 
not due to an increased amount of membranous materials, F-actin 
or adaptor proteins at the base area, as a red fluorescent protein 
(RFP)-tagged PtdIns(4,5)P2-interacting pleckstrin homology 
(PH) domain39, GFP-actin or Ants did not accumulate at this area  
(Fig. 4Ba,Bb,D and Supplementary Fig. 3ai,b). In addition, no accu-
mulation was observed for GFP-β​H-spectrin-Δ​C, which deleted a 
carboxy-terminal fragment containing the tetramerization domain40  
(Fig. 4Bc,D and Supplementary Fig. 4a), or GFP-β​H-spectrin-Δ​N,  
which deleted an amino-terminal fragment containing the 
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Fig. 3 | α/βH-Spectrin accumulates at the fusogenic synapse in the absence of chemical signalling from CAMs. A, Schematic diagram of the fusogenic 
synapse showing truncated Duf in the founder cell interacting with Sns in the FCM to induce the formation of an invasive F-actin focus. B, Co-expression 
of DufΔ​intra-Flag and V5-β​H-spectrin in all muscle cells with twi-GAL4 in WT (Ba) or duf rst double-mutant (Bb,Bc) embryos. Representative images of 
fusogenic synapses in stage 13–14 embryos triple labelled with anti-V5 (β​H-spec), phalloidin (F-actin) and anti-Ants or anti-Duf (DufΔ​intra-Flag). FCMs 
are outlined (dashed lines) in the merge panels. Note the β​H-spectrin accumulation (Bb,Bc) and the lack of Ants accumulation (Bc) at the fusogenic 
synapse (arrowheads) in the absence of Duf intracellular signalling. Scale bar, 5 μ​m. C, Quantification of the relative intensity of β​H-spectrin and Ants 
enrichment at the fusogenic synapse in WT and duf, rst double-mutant embryos expressing DufΔ​intra. The fluorescence intensity at the fusogenic synapse 
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actin-binding domain40 (Fig. 4Bd,D and Supplementary Fig. 4a,b), 
suggesting that tetramerization and actin-binding activities are 
required for β​H-spectrin accumulation. α​-Spectrin only exhibited 
mechanosensitive accumulation when co-expressed with β​H-spectrin, 
but not when expressed alone, in S2 cells (Supplementary Fig. 
3ai,ii,b), which is consistent with the higher expression of endogenous  
β​-spectrin than β​H-spectrin in these cells (FlyBase)41, the former 
of which was not mechanosensitive, as demonstrated by MPA 
assays (Supplementary Fig. 3aiii,b). Notably, the mechanosensitive 
accumulation of β​H-spectrin is time and force dependent, which 
increased linearly over time until reaching its peak level at 80–90 s 
after the onset of aspiration (Supplementary Fig. 3c) and increased 
proportionally to applied pressure (Supplementary Fig. 3d). These 
results indicate that α​/β​H-spectrin binding to the actin network 
depends on the number of binding sites at a given time rather than 
the additional cooperative activity of the previously bound tetra-
mers, and that the mechanical force applied to the cortical actin  
network leads to an increase in the number of binding sites for the  
α​/β​H-spectrin heterotetramers.

α/βH-Spectrin responds to shear deformation. It is intriguing that 
α​/β​H-spectrin and MyoII show distinct patterns of mechanosensi-
tive accumulation revealed by MPA. Previous coarse-grained mod-
elling suggests that the tip of an aspirated cell corresponds to an area 
of maximal actin network dilation (or radial expansion), whereas 
the base area corresponds to the maximal shear deformation (or 
shape change)42. MPA analyses suggest that MyoII is a mechano-
sensory protein for actin network dilation, whereas α​/β​H-spectrin 
responds specifically to shear deformation. Consistent with the 
distinct areas of mechanosensitive accumulation of MyoII and 
spectrin, β​H-spectrin remained at the base area in cells treated with 
Y27632, a small molecule that decreases MyoII activity by inhibiting  
Rho-associated protein kinase (ROCK), the upstream activator 
of MyoII (compare Fig. 4Ca and Fig. 4Cb; Fig. 4D), and MyoII  
(RFP-Zip14) remained at the tip of β​H-spectrin knockdown cells 
(compare Fig. 4Ca and Fig. 4Cc; Fig. 4E). At late time points, weak 
β​H-spectrin accumulation was observed at the neck and tip areas 
of aspirated cells in a MyoII-dependent manner (Fig. 4A, 85 s; 
Supplementary Fig. 3aiii), suggesting that MyoII-mediated cortical 
contraction at the tip may gradually create shear deformation along 
the aspirated portion of the cell.

The distinct domains of mechanosensitive accumulation of 
MyoII and spectrin induced by pulling forces prompted us to ask 
whether they exhibit a similar response to pushing forces. Course-
grained modelling of cells invaded by protrusions with a 5-μ​m 
diameter predicted clear separation of dilation versus shear domains 
along the invasive protrusion, with maximal dilation corresponding 
to the tip and maximal shear deformation corresponding to the base 

(Fig. 4F). However, when the invasive protrusions became narrower 
(~400-nm diameter), there was a gradual increase of shear deforma-
tion at the tip, where the dilation deformation remained largely the 
same (Fig. 4G–J). This model predicted that the mechanosensitive 
accumulations of β​H-spectrin and MyoII induced by narrow protru-
sions may no longer be clearly separated. To test this directly, we 
performed atomic force microscopy (AFM) experiments, in which 
a pushing force was applied to cells expressing GFP-β​H-spectrin and 
RFP-MyoII by a cantilever with a tip diameter of ~200 nm, which 
mimics the length scale of the invasion protrusions at a mature 
fusogenic synapse (Fig. 4K). When indented at a depth of 2–5 μ​m,  
β​H-spectrin and MyoII exhibited rapid and largely overlapping  
domains of accumulation to the indented area (Fig. 4L and 
Supplementary Video 5), consistent with the pattern of mechano-
sensitive response predicted by the course-grained model and the 
enrichment of both β​H-spectrin and MyoII at the fusogenic synapse 
in Drosophila embryos14 (Fig. 1C).

α/βH-Spectrin restricts CAMs at the fusogenic synapse. What are 
the biological functions of spectrin accumulation at the fusogenic 
synapse? In the α/βH-spectrin double mutant, the founder-cell CAM 
Duf and its interacting protein Ants were both dispersed at the fuso-
genic synapse, instead of forming a tight aggregate as in wild-type 
cells (Fig. 5A,B). Time-lapse imaging revealed the dynamic disper-
sion of Duf in these mutant embryos (Supplementary Video 6),  
compared to the tight Duf cluster associated with dense F-actin 
foci in wild-type embryos (Fig. 5C and Supplementary Video 7). 
Occasional Duf aggregates in mutant embryos gradually diffused 
over time, suggesting that α​/β​H-spectrin is required for the main-
tenance, but not the initiation, of the Duf clusters (Fig. 5D and 
Supplementary Video 6).

As Duf and Sns interact in trans31, we tested whether Duf dis-
persal in founder cells of the α/βH-spectrin mutant affects Sns dis-
tribution in FCMs. Indeed, Sns was also dispersed at the fusogenic 
synapse in these embryos (Fig. 5E), and so did the actin nucleation-
promoting factors and their interacting proteins, such as WASP-
interacting protein (WIP; also known as Solitary (Sltr)), which is 
recruited by Sns to the fusogenic synapse43,44 (Fig. 5F). The diffusion 
of actin nucleation-promoting factors resulted in a fuzzy F-actin 
structure in the FCM (Fig. 5A,B,D–F), with an average fluorescence 
intensity of 61 ±​ 19 per focus on a 0–255 scale (n =​ 35), compared 
to 170 ±​ 15 per focus (n =​ 28) in wild-type embryos. The low inten-
sity of F-actin indicates a low filament density, which generated 
stubby and closely abutting toe-like protrusions, instead of the long, 
narrow and well-separated finger-like protrusions in wild-type 
embryos12,18,19 (Fig. 5H). Thus, Duf restriction by α​/β​H-spectrin in 
founder cells regulates Sns localization and the distribution of actin 
filaments at the fusogenic synapse in FCMs.

Fig. 4 | α/βH-Spectrin exhibits mechanosensitive accumulation to shear deformation. A–E, Mechanosensitive accumulation of β​H-spectrin revealed by 
MPA. Representative images of MPA experiments in which an S2 cell expressing a fluorescent protein was aspirated with a micropipette (diameter: ~5 μ​m)  
(A–C). DIC, differential interference contrast. Arrowheads indicate enrichment of GFP-β​H-spectrin at the base of the aspirated portion in A, Ca and the 
Y27632-treated cell in Cb; enrichment of RFP-MyoII at the tip in Ca and the β​H-spectrin knockdown (KD) cell in Cc, but no enrichment of the probes 
or proteins in B. Scale bars, 5 μ​m. Protein accumulation at the base (D) or the tip (E) of aspirated cells from A–C. Background-subtracted fluorescence 
intensities at the base (Ib) (D) or the tip (It) (E) and at the opposite pole of the cell body (Io) were measured, and the ratio (Ib/Io) (D) or (It/Io) (E) was 
calculated. The number of independent experiments: n =​ 21, 9, 11, 16, 15 and 14 (D, left to right) and n =​ 10, 11 and 14 (E, left to right). The black horizontal 
lines represent the mean values. Analysis of variance (ANOVA) was with Fisher’s least significant difference test. F–J, Coarse-grained simulation of 
mechanical deformation in the receiving cell triggered by invasive protrusions. A schematic diagram of a cell invaded by a protrusion (F) and heatmaps of 
simulated dilation or shear deformation (F,G) caused by protrusions of different radii (r0) are shown. Close-up views are shown in G. Plots of dilation and 
shear deformation along 2-μ​m protrusions with an r0 of 500 nm (H) or 200 nm (I) are shown. n =​ 4 independent measurements of deformation along the 
protrusions, mean ±​ s.e.m. Shear deformation increases at the tip in panel I compared to panel H. Dilation and shear deformations at the tip (normalized 
position: 0.0–0.2) of protrusions with different r0 are shown (J). Shear deformation increases with smaller radius. K,L, β​H-Spectrin accumulation in 
response to pushing forces revealed by AFM. A schematic diagram of the AFM experiments is displayed (K). A cantilever applied a pushing force to the 
periphery of a S2R+​ cell. A S2R+​ cell expressing GFP-β​H-spectrin and RFP-MyoII is shown (L). Both proteins rapidly accumulated to the indented area 
generated by the cantilever (arrowheads) in 24 out of 42 cells tested. Scale bar, 10 μ​m.
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α/βH-Spectrin maintains Duf enrichment at the fusogenic syn-
apse via biochemical interactions. To investigate how spectrin 
restricts Duf at the fusogenic synapse, we performed co-immu-
noprecipitation experiments using Drosophila embryos expressing 
Flag-β​H-spectrin and Duf-GFP in muscle cells. An antibody against 
Flag, but not a control antibody, co-precipitated α​-spectrin and 
Duf-GFP, suggesting that the α​/β​H-spectrin heterotetramers interact  

with Duf (Fig. 5I and Supplementary Fig. 5a). Moreover, DufΔ​intra, 
which can no longer interact with α​/β​H-spectrin, appeared to be dif-
fused at many fusogenic synapses in the duf rst mutant, similar to 
Duf diffusion in the α/βH-spectrin mutant (Fig. 5G). As a conse-
quence, the F-actin foci that formed initially due to the trans-inter-
actions between DufΔ​intra and Sns also gradually dispersed at the 
fusogenic synapse (Supplementary Video 8), as in the α/βH-spectrin 
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mutant (Fig. 5A,B,D–F and Supplementary Video 7). Interestingly, 
time-lapse imaging revealed a gradual diffusion of accumulated 
β​H-spectrin in DufΔ​intra-expressing duf rst mutant embryos 
(Supplementary Video 9), suggesting that the α​/β​H-spectrin–Duf 

interaction is also required for stabilizing the mechanoaccumula-
tive α​/β​H-spectrin at the fusogenic synapse.

Despite the largely ‘co-localized’ α​/β​H-spectrin and Duf at the 
fusogenic synapse observed with confocal microscopy, structured 
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illumination microscopy (SIM) revealed distinct microdomains 
occupied by these proteins at early stages of the fusogenic synapse 
marked by small actin foci (Fig. 6Aa), suggesting that Duf does not 
directly recruit β​H-spectrin in founder cells. β​H-Spectrin appeared 
to surround the actin focus, which is consistent with the mechano-
sensitive accumulation of α​/β​H-spectrin to the base areas of invasive 
protrusions. At late stages of the fusogenic synapse, characterized by 
large actin foci and a ring-like structure formed by β​H-spectrin and 
Duf, these two proteins exhibited closer association, probably medi-
ated by the α​/β​H-spectrin–Duf interaction (Fig. 6Ab). Strikingly,  
α​/β​H-spectrin was mostly seen at the outer rim of the ring  
(Fig. 6Ab), indicating that the spectrin network functions as a cel-
lular fence to restrict Duf diffusion.

α/βH-Spectrin network functions as a cellular sieve to constrict 
the invasive protrusions. The closely abutting morphology of the 
invasive protrusions in the α/βH-spectrin mutant prompted us to 
ask whether spectrin is involved in shaping the invasive structure 
to well-separated, long and narrow protrusions. At early stages of 
the fusogenic synapse, actin polymerization in the FCM propelled 
wide protrusions that triggered mechanosensitive accumulation of 
β​H-spectrin at the base (Fig. 6Ba,Bb). As foci grew, more β​H-spectrin 
accumulated at the fusogenic synapse, resulting in an uneven spec-

trin network with smaller spectrin-free domains (Fig. 6Bc). At the 
late stage, only narrow protrusions were seen penetrating through 
spectrin-free microdomains (Fig. 6Bc–Be and Supplementary 
Video 10). Thus, the spectrin network in the founder cell functions 
as a ‘cellular sieve’ to constrict the diameters of the invasive protru-
sions from the FCM. The resulting long and narrow protrusions put 
the fusogenic synapse under high mechanical tension to promote 
plasma membrane fusion12,14.

βV-spectrin is required for mouse myoblast fusion. The require-
ment for β​H-spectrin in Drosophila myoblast fusion led us to test 
whether the mammalian orthologue of β​H-spectrin, β​V-spectrin 
(also known as Sptbn5), is involved in myoblast fusion. Knocking 
down β​V-spectrin with two independent short interfering RNAs 
(siRNAs) in mouse C2C12 myoblasts significantly decreased C2C12 
cell fusion (Fig. 7A–C). This was not due to a failure in muscle cell 
differentiation, as the expression level of myogenic regulatory fac-
tors—MyoD and myogenin—remained similar in knockdown ver-
sus control cells (Fig. 7D,E and Supplementary Fig. 5b). In addition, 
the expression of skeletal muscle myosin heavy chain (skMHC) 
was not affected by the knockdown (Fig. 7E). Consistent with the 
normal expression of these proteins, the β​V-spectrin-knockdown 
cells had a normal, elongated morphology and were MHC positive, 
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despite containing fewer nuclei than the control myofibres (Fig. 7A).  
Thus, like its Drosophila counterpart, β​V-spectrin promotes mam-
malian myoblast fusion.

Discussion
This study has revealed a dynamic mechanoresponsive property of 
α​/β​H-spectrin in response to invasive forces during cell–cell fusion. 
The mechanosensitive accumulation of α​/β​H-spectrin in the receiv-
ing fusion partner establishes a transient and uneven spectrin-
enriched network at the fusogenic synapse, which functions both as 
a cellular fence to restrict CAMs and a cellular sieve to constrict the 
invasive protrusions from the attacking cell. Through these actions, 

spectrin helps to build a fusogenic synapse under high mechanical 
tension to facilitate cell membrane fusion.

An intercellular mechanoresponsive feedback loop at the fuso-
genic synapse. The fusogenic synapse is established by trans-inter-
actions between cell-type-specific CAMs, which initiate a series of 
downstream cellular events in both cell types15,45–47. In FCMs, Sns 
recruits the Arp2/3 nucleation-promoting factors to activate actin 
polymerization and generate invasive protrusions, which triggers 
mechanosensitive accumulation of α​/β​H-spectrin in the apposing 
founder cells. The accumulated α​/β​H-spectrin keeps Duf at the fuso-
genic synapse, which recruits additional Duf by lateral diffusion 
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and oligomerization. Newly recruited Duf and transiently stabilized 
Sns sets off additional rounds of protrusion formation, mechano-
sensitive accumulation of α​/β​H-spectrin and the recruitment of  
additional CAMs. Through such a positive-feedback loop, a mature 
fusogenic synapse forms with appropriate levels and localization of 
CAMs, actin and spectrin. The absence of α​/β​H-spectrin in founder 
cells breaks the positive-feedback loop, such that Duf and Sns can-
not maintain or increase their concentrations at the fusogenic syn-
apse and the structure eventually falls apart. Thus, the intercellular 
mechanoresponsive feedback loop is critical for the growth and sta-
bilization of the fusogenic synapse.

α/βH-Spectrin as a dynamic mechanoresponsive protein for 
shear deformation. Spectrin has long been thought as a scaffold-
ing protein that stably links the plasma membrane and the actin 
cytoskeleton. Our study revealed a mechanosensitive behaviour of 
α​/β​H-spectrin in response to shear stress (Supplementary Fig. 6a). 
Under shear stress, the actin network’s shape/angle change leads to 
changes in the distances between actin crosslinker-binding sites. 
Whereas shorter and stiffer crosslinkers are prone to dissociating 
from the network, α​/β​H-spectrin heterotetramers, each with 29 
spectrin repeats and flexible linker regions, can accommodate a 
range of angle/distance changes by folding or unfolding the spectrin 
repeats and stay bound to the shear-deformed actin network for an 
extended period of time. In this regard, it has been demonstrated 
that spectrin heterotetramers in red blood cells unfold their spectrin 
repeats under shear stress48. FRAP analyses revealed a fraction of  
α​/β​H-spectrin that remains associated with the actin network at the 
fusogenic synapse, consistent with the prolonged binding of some 
spectrin heterotetramers. We propose that the extensibility and flex-
ibility of α​/β​H-spectrin heterotetramers are the two major properties 
enabling its transient stable association with the shear-deformed 
actin network. In support of this, filamin, an actin crosslinker orga-
nized as flexible and extensible V-shaped dimers (having immu-
noglobulin-like folds49 instead of spectrin repeats), also exhibited 
mechanosensitive accumulation under shear stress42.

Once the shear stress is removed from the cell cortex, the actin 
network is no longer under strain and α​/β​H-spectrin dissociates 
from the actin network, generating a pool of free α​/β​H-spectrin 
heterotetramers that are available for future mechanosensitive 
responses. Two factors may influence the dynamic dissociation of 
spectrin from actin: accessory proteins and the actin-binding affin-
ity of spectrin. The absence of adducin and protein 4.1 in embry-
onic muscle cells suggests that the α​/β​H-spectrin–actin interaction 
is relatively unstable compared to that in erythrocytes and axons, 
such that α​/β​H-spectrin is more likely to dissociate from the actin 
network in muscle cells. Although the actin-binding affinities of 
the structurally similar β​H-spectrin and β​-spectrin are not known, 
the difference in their mechanoresponsive behaviours suggests that  
β​-spectrin, similar in size to mini-β​H-spectrin, may bind to F-actin 
with a higher affinity than β​H-spectrin or mini-β​H-spectrin. Thus, 
most β​-spectrin proteins are stably integrated into the α​/β​-spec-
trin heterotetramers at the cell cortex, leaving few free β​-spectrin 
available for transient mechanosensitive response at the fusogenic 
synapse. In this regard, α​-actinin-1, which has a 90-fold higher 
actin-binding affinity than α​-actinin-4, does not show mechano-
sensitive accumulation, whereas α​-actinin-4 does50.

The α/βH-spectrin network functions as a cellular fence and a cel-
lular sieve. The mechanoaccumulative spectrin network serves at 
least two functions at the fusogenic synapse. In founder cells, the 
accumulated spectrin builds a cellular fence to restrict Duf diffusion, 
probably through two complementary mechanisms (Supplementary 
Fig. 6b). First, biochemical interactions between Duf and spectrin 
could prevent Duf clusters from lateral diffusion when they encoun-
ter spectrin-enriched patches. Second, the spectrin heterotetramers 

are linked to the plasma membrane via the PH domain of β​H-spectrin 
and may collide with the cytoplasmic domain of Duf to block Duf 
diffusion. A similar role for spectrin in restricting transmembrane 
protein diffusion has been demonstrated in mouse erythrocytes, in 
which the transmembrane protein band 3 diffuses faster in spectrin-
deficient mutant erythrocytes than in normal cells51 and the cyto-
plasmic portion of band 3 slows down the diffusion of the protein52. 
Spectrin also functions as a cellular sieve to constrict the invasive 
protrusions from the FCM (Supplementary Fig. 6b). The build-up 
of the sieve is a dynamic process involving continuous mechanical 
stimulation and mechanosensitive accumulation. The early mecha-
nosensitive accumulations of spectrin in founder cells locally block 
future protrusions from the FCM, forcing new protrusions to pene-
trate through neighbouring spectrin-free areas, thus triggering addi-
tional spectrin accumulation. Eventually, large areas of the fusogenic 
synapse will be populated by spectrin heterotetramers, forming an 
uneven spectrin network with a few spectrin-free microdomains. 
Only narrow protrusions that have sufficient mechanical stiffness 
can ‘squeeze’ through these microdomains to invade the founder 
cell deeply (Supplementary Fig. 6b). Thus, the dynamically accumu-
lated spectrin network gradually constricts the invasive protrusions 
from the FCM and increases the mechanical tension at the fusogenic 
synapse to promote cell–cell fusion. Given the widespread expres-
sion of spectrin in most eukaryotic cell types, our characterization of  
α​/β​H-spectrin as a dynamic mechanoresponsive protein in fusogenic 
cells has broad implications for understanding spectrin functions in 
many dynamic cellular processes beyond cell–cell fusion.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41556-018-0106-3.
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Methods
Fly stocks and genetics. The following strains were obtained from the 
Bloomington Drosophila Stock Center: fly stocks w1118 (wild type), α-specrg41 
(α-spec mutant), kstMI03134 (βH-spec trap line tagged by GFP and 3×​ Flag; labelling 
the two longer protein isoforms: PE and PG), twi-GAL4, mef2-GAL4, 69B-GAL4, 
UAS-GFP-actin and UAS-actin-mRFP. kstCPTI002266 (βH-spec trap line tagged by 
yellow fluorescent protein (YFP); labelling the five shorter protein isoforms: PA, 
PB, PC, PF and PH) was obtained from the Kyoto Stock Center. Other stocks used 
were: kst14.1 (βH-spec mutant)53, Df(3L)1226 (βH-spec deficiency line)53, UAS-mini-
βH-spec54, UAS-Myc-β-spec23, UAS-DufΔintra-Flag33, dpak3zyg(del) (ref. 19), sltrS1946 
(ref. 43), sns-GAL4 (ref. 55) and rP298-GAL4 (ref. 35). Transgenic flies carrying 
UAS-V5-βH-spec, UAS-mCherry-βH-spec, UAS-Duf-GFP and UAS-Duf-mCherry 
were generated by P-element-mediated germline transformation. To express 
genes in fly embryos, females carrying the transgene under the control of an UAS 
promoter were crossed with twi-GAL4 (all muscle cells), mef2-GAL4 (all muscle 
cells), rP298-GAL4 (founder cells), sns-GAL4 (FCMs) and 69B-GAL4 (epithelial 
cells) males, respectively. The expression of β​H-spectrin in FCMs was performed in 
a fusion-defective sltr mutant43 to prevent the diffusion of ectopically expressed β​
H-spectrin from FCMs to founder cells following myoblast fusion events, such as in 
wild-type embryos. The α/βH-spectrin double mutant α-specrg41 kst14.1/TM6 (labelled 
as α-spec−/− βH-spec−/− in the figures) was generated using standard genetic methods.

Molecular biology. Full-length βH-spec was amplified by PCR (with or without a 
tag) from cDNAs generated from the mRNA of stage 11–15 w1118 flies. Owing to the 
large size of the βH-spec gene, three fragments were individually amplified using the 
primers as follows:
(1)  β​H-spec-5′​: GACCGGTCAACATGACCCAGCGGGACGGCATC
(2)  β​H-spec-3721-3′​: CTCCACGAATTCGGTGTCATG
(3)  β​H-spec-3721-5′​: CATGACACCGAATTCGTGGAG
(4)  β​H-spec-8214-3′​: CTCACCCTCTAGAATGCTATTG
(5)  β​H-spec-8214-5′​: CAATAGCATTCTAGAGGGTGAG
(6)  β​H-spec-3′​: CCAAGCGGCCGCTCACTGTGGCGGGACTTGACTC

The three PCR fragments were then subcloned into the Drosophila 
transformation vector pUAST. To generate the UAS-β​H-specΔ​N and UAS-β​H-specΔ​
C constructs, the following primers were used:
(1) � β​H-spec-3865-5′​: GGAATTCCAACATGGTGTGTCGATCTGCAAATGTTC
(2)  β​H-spec-8028-3′​: GGTCTAGATCACAGCTGATGGGCCTCAGTTAG

To generate the pDEST-β​H-spec constructs for glutathione S-transferase (GST) 
fusion proteins for the F-actin co-sedimentation assays, the Gateway cloning 
system (Invitrogen) was used with the following primers:
(1) � β​H-spec-1-C:
GGGGACAAGTTTGTACAAAAAAGC 
AGGCTTCATGACCCAGCGGGACGGCATC
(2)  β​H-spec-1-K:
GGGGACCACTTTGTACAAGAAAG 
CTGGGTTTTACTTCTTGCGATCTGCGTCCAT
(3)  β​H-spec-29-C:
GGGGACAAGTTTGTACAAAAAAG 
CAGGCTTCGGAGCCAAACAAGTCCACGTC
(4)  β​H-spec-31-K:
GGGGACCACTTTGTACAAGAAAG 
CTGGGTTTTATTGGGACGCCGCATTCTGGCG
(5)  β​H-spec-34-C:
GGGGACAAGTTTGTACAAAAAAG 
CAGGCTTCCCGAACATGCAACTGCTTAGC
(6)  β​H-spec-34-K:
GGGGACCAC TTTGTACAAGAAAGCTGGGTTT 
TATCACTGTGGCGGGACTTGACT

Full-length β-spec was amplified by PCR from the UAST-Myc-β​-spec plasmid23. 
The original construct lacks nine residues at the N terminus, which was restored 
in this subcloning. Owing to the large size of the β-spec transgene, two fragments 
were individually amplified using the primers as follows:
(1)  β​-spec-5′​: TCGAACGCTGCTATACGATCGG 
GCGGCCGCATGACGACGGACATTTCGATTGTTCGCTGGGATC 
CCAGCCAGGGTCCTGGCA
(2)  β​-spec-int-3′​: GTTGTCGATCTCCTCGCGGATCG
(3)  β​-spec-int-5′​: CGATCCGCGAGGAGATCGACAAC
(4)  β​-spec-3′​: accttcgaaccgcgggcccTCTAGATTACTTTTTCTT 
TAAAGTAAAAAACGATCTGCGCT

The two PCR fragments were then subcloned into a Drosophila vector pAc-
mCherry (N) by Gibson assembly. pAc-mCherry (N) was modified from the 
pAc5.1/V5-His vector (Invitrogen), into which mCherry was PCR cloned between 
the KpnI and NotI sites, using the primers as follows:
(1)  mCherry-5′​: CGTGGTACCATGGTGAGCAAGGGCGAGG-3′​ (forward)
(2)  mCherry-linker-GCAGCGGCCGCCCGATCGTATA 
GCAGCGTTCGACTTGTACAGCTCGTCCATGC. The resulting linker residues 
between the N-terminal mCherry and β​-spectrin are SNAAIRSGGR.

N-terminally mCherry-tagged full-length α​-spectrin was generated by 
inserting mCherry into the pBSK-α​-spectrin construct (from C.T.) by Gibson 

assembly. This created a de novo AgeI site upstream of the Kozak sequence (GCC 
ACC) followed by the mCherry sequence, the flexible linker sequence and the full-
length α​-spectrin. The AgeI–NotI piece containing mCherry and the full-length  
α​-spectrin was subsequently subcloned into the fly expression vector pAc-V5-His 
(Invitrogen). The primer pair used to create the mCherry-linker tag for Gibson 
assembly is as follows:
(1)  mCh-α​-spec-For: GAG CTC CAC CGC GGT GGC GGC CGC ACC GGT 
GCC AAC ATG GTG AGC AAG GGC GAG GAG
(2)  mCh-α​-spec-Rev: CAC CTC TTT GGG TGT AAA GTT CTC CAT CGA TCG 
TAT AGC AGC ATT CGA CTT GTA CAG CTC GTC CAT GCC

dsRNAs were synthesized by in vitro transcription with gene-specific primers 
containing the T7 promoter sequence (TTAATACGACTCACTATAGGGAGA) 
at the 5′​ end (MEGAscript; Ambion). Synthesized dsRNAs were purified using 
NucAway Spin Columns (Ambion).

Immunofluorescent staining and imaging. Fly embryos were fixed and stained as 
described previously4,43. The following primary antibodies were used: rabbit anti-
muscle MHC (1:1,000)56, rabbit anti-β​H-spectrin (1:100)21, rabbit anti-β​-spectrin 
(1:400)57, mouse anti-α​-spectrin (1:1; 3A9, Developmental Studies Hybridoma 
Bank (DSHB)), guinea pig anti-Duf (1:500)4, guinea pig anti-Ants (1:1,000)34, 
rat anti-Sltr (1:30)43, rat anti-Sns (1:500)30, mouse anti-Eve (1:30; 3C10, DSHB), 
mouse anti-adducin (1:400; 1B1, DSHB), mouse anti-protein 4.1 (1:400; C566.9, 
DSHB), rabbit anti-GFP (1:500; A-11122, Invitrogen), mouse anti-Flag (1:200; 
F3165, Sigma), mouse anti-Myc (1;100; MA1-980, Thermo Fisher Scientific) 
and mouse anti-V5 (1:200; R960-25, Invitrogen). The following secondary 
antibodies were used at 1:200: Alexa 488-, Alexa 568- and Alexa 647-conjugated 
(Invitrogen) and -biotinylated (Vector Laboratories) antibodies made in goats. 
For phalloidin staining, FITC- or Alexa 568-conjugated phalloidin (Invitrogen) 
were used at 1:200. Fluorescent images were obtained on a LSM 700 Meta confocal 
microscope (Zeiss), acquired with LSM Image Browser software (Zeiss) and Zen 
software (Zeiss), and processed using Adobe Photoshop CS. For quantification 
of fluorescent signals, the signal intensities of the cellular area of interest and the 
control area were measured and processed for presentation by the ImageJ program 
(http://imagej.nih.gov/ij/).

Drosophila cell culture. S2 and S2R+​ cells were cultured in Schneider’s medium 
(Gibco) supplemented with 10% FBS (Gibco) and penicillin/streptomycin 
(Sigma). Cells were transfected using Effectene (Qiagen) per the manufacturer’s 
instructions. For immunofluorescent staining, cells were fixed with 4% 
formaldehyde in PBS, washed in PBST (PBS with 0.1% Triton X-100) and PBSBT 
(PBST with 0.2% BSA) consecutively and stained with the following antibodies 
in PBSBT: mouse α​-V5 (1:2,000; R960-25, Invitrogen) and rabbit α​-GFP (1:1,000; 
A-11122, Invitrogen). Secondary Alexa 488-, Alexa 568- or Alexa 647-conjugated 
antibodies were used at 1:400 (Invitrogen). To visualize F-actin, FITC- or Alexa 
568-conjugated phalloidin (Invitrogen) was used at 1:500 in PBST.

Mouse C2C12 myoblast culture. A pair of predesigned siRNAs against the mouse 
β​V-spectrin gene (siRNA1, β​V-spectrin-1: CAGGATGGGCTTCGAACCCTA; 
siRNA2, β​V-spectrin-2: AAAGACGATTTCAAGCCCTAA) were obtained from 
Qiagen. RNA interference was performed per the manufacturer’s instructions. 
Briefly, approximately 3 ×​ 105 cells were seeded on each well of a 6-well tissue 
culture dish and transfected with the individual siRNAs against β​V-spectrin (10 µ​M  
final concentration) using HiPerFect transfection reagent (Qiagen). On day 2, 
the cells were transfected again and differentiated, and cells that were treated 
in parallel were subjected to qRT–PCR to access the knockdown level. Five 
days post-differentiation, cells were fixed and stained with anti-skeletal muscle 
myosin antibody (1:100; F59, sc-32732, Santa Cruz Biotechnology) to identify 
differentiated cells. Cells were mounted using Prolong Gold antifade reagent 
with 4,6-diamidino-2-phenylindole (DAPI; Molecular Probes, Invitrogen) to 
visualize the nuclei. The fusion index was calculated as the percentage of nuclei 
in multinucleated syncytia versus the total number of nuclei per ×​20 microscopic 
fields under LSM 810 (Zeiss). Cells in at least 10 random fields were counted in 
each experiment and three independent experiments were performed.

For western blot analyses and quantifications, transfected control and siRNA-
treated C2C12 cells were collected at different time points and washed and lysed 
in cell lysis buffer (0.5% SDS, 1% NP-40, 1% sodium deoxycholate, 150 mM 
NaCl, 2 mM EDTA and 10 mM sodium phosphate, pH 7.2) containing protease 
inhibitors. The cell lysates were briefly sonicated, centrifuged and analysed by 
SDS–PAGE and western blotting with antibodies against MyoD (1:100; sc-377460), 
myogenin (1:100; sc-52903), skeletal muscle myosin (1:100; sc-32732) and  
α​-tubulin (1:100; sc-58666) from Santa Cruz Biotechnology. Protein quantification 
was performed using Photoshop image software (Adobe). The chemiluminal 
emission from both the protein of interest and the loading control were manually 
tested to be within the linear range. For each experiment, three independent 
preparations were examined.

Time-lapse imaging and FRAP. Time-lapse imaging of embryos was performed 
as previously described4. Briefly, embryos expressing fluorescently tagged 
proteins in muscle or epithelial cells were collected and dechorionated in 50% 
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bleach. Subsequently, embryos were washed in water, placed onto a double-
sided tape (3 m) and covered with a layer of Halocarbon oil 700/27 (2:1; Sigma). 
Time-lapse image acquisition was carried out on an LSM 700 Meta confocal 
microscope (Zeiss).

The FRAP experiments were performed using the same conditions described 
previously, which allowed full fluorescence recovery of GFP-actin, GFP-WASP 
and Sltr-mCherry18. Specifically, the solid 488-nm laser output was set to 2% to 
avoid general photobleaching and phototoxicity. A region of interest was manually 
selected and imaged in 3–5 frames every 30 s to record the original fluorescent 
intensity (pre-bleach). Then, the region of interest was quickly photobleached to 
a level of ~20% of its original fluorescence intensity by 5–10 times of consecutive 
3-s laser scans with 2% laser output and subsequently imaged every 30 s to record 
fluorescence recovery (post-bleach). The fluorescence intensities of the pre-
bleached and post-bleached region of interest were measured using the ImageJ 
program. The Prism software was used to determine the maximal recovery level 
(that is, the percentage recovery compared to the pre-bleach level) and the half-
time of recovery using a kinetic curve fit with an exponential decay equation.

SIM. Stage 13–14 embryos were fixed and stained as described above. The 
samples were then mounted in Prolong Gold (Molecular Probes) and imaged 
with an inverted microscope (Ti-E; Nikon) equipped with a ×​100 oil NA 1.49 
CFI SR Apochromat TIRF objective lens and an ORCA-Flash 4.0 sCMOS 
camera (Hamamatsu Photonics K.K.). The images were processed using Adobe 
Photoshop CS6.

Electron microscopy. Embryos were fixed by the high-pressure freezing and freeze 
substitution method, as previously described4,58. Briefly, a Bal-Tec device was used 
to freeze stage 12–14 embryos. Freeze substitution was performed with 1% osmium 
tetroxide, 0.1% uranyl acetate in 98% acetone and 2% methanol on dry ice. Fixed 
embryos were embedded in Epon (Sigma-Aldrich) and cut into thin sections with 
an ultramicrotome (Ultracut R; Leica). The sections were mounted on copper grids 
and post-stained with 2% uranyl acetate for 10 min and Sato’s lead solution59 for 
1 min to improve image contrast. Images were acquired on a transmission electron 
microscope (CM120; Philips).

Recombinant protein purification and F-actin co-sedimentation assay. To purify 
GST-fused β​H-spectrin fragments from BL21-DE3 cells (NEB), protein expression 
was induced with 0.2 mM isopropyl-β​-d-thiogalactoside (IPTG) at room 
temperature for 12–15 h. Cells were harvested and lysed by sonication in the lysis 
buffer: PBS (pH 7.4), 1% Triton X-100, 5 mM dithiothreitol, 1 mM phenylmethyl 
sulfonyl fluoride and cOmplete Mini Protease Inhibitor Cocktail (Roche). After 
centrifugation, the supernatant was collected and incubated with pre-equilibrated 
glutathione agarose resin at 4 °C for 2–3 h. After washing in the lysis buffer, β​H-
spectrin protein was eluted with the elution buffer: 50 mM Tris (pH 7.5), 150 mM 
NaCl, 5 mM dithiothreitol and 10 mM glutathione (Sigma).

The F-actin co-sedimentation assay was performed following the 
manufacturer’s protocol (Cytoskeleton). Briefly, 0.5–1 μ​M purified protein was 
incubated with 4 μ​M F-actin assembled from monomeric actin for 1 h in F buffer: 
5 mM Tris-HCl (pH 8.0), 0.2 mM CaCl2, 50 mM KCl, 2 mM MgCl2 and 1 mM 
ATP. The F-actin–protein mixtures were centrifuged at 140,000g for 30 min, 
and supernatants and pellets were separated and analysed by SDS–PAGE and 
Coomassie Blue staining.

Co-immunoprecipitation. Embryos expressing GFP-tagged Duf and Flag-tagged β​
H-spectrin (kstMI03134/twi-GAL4; UAS-Duf-GFP/+) were collected and dechorionated 
in 50% bleach. Embryos were frozen in liquid nitrogen and then dissociated in 
cold extraction buffer (50 mM Tris-HCl (pH 8.5), 150 mM NaCl and 0.5% sodium 
deoxycholate) with 20 strokes in a Dounce homogenizer. After centrifugation 
at 16,000g for 20 min, supernatants were removed and incubated with either 
anti-V5 (control) or anti-Flag (β​H-spectrin) antibodies at 4 °C for 2–3 h. Protein G 
Sepharose beads (Roche) were used to pull down proteins. Precipitated proteins 
were analysed by SDS–PAGE and western blotting analysis.

MPA. MPA was performed as previously described60. Briefly, a pressure difference 
was generated by adjusting the height of a motor-driven water manometer. A fixed 
pressure of 0.4 nN per μ​m2 was applied instantly to the cell cortex of S2 cells with 
a polished glass pipette ~2–2.5 μ​m in radius. Images were collected in Schneider’s 
medium supplemented with 10% FBS on an Olympus IX81 microscope with a ×​40 
(1.3 NA) objective and a ×​1.6 optovar, utilizing MetaMorph software and analysed 
using ImageJ. After background correction, the fluorescence intensity at the sites of 
protein accumulation was normalized against the opposite cortex of the cell  
(Ib/Io or It/Io, where Ib, It and Io is the intensity in the cortex at the base, tip or 
opposite side of the cell being aspirated). An analysis of variance (ANOVA) with 
Fisher’s least significant difference was applied to determine significance.

AFM. S2R+​ cells were plated on glass coverslips coated with concanavalin A 
(Sigma) and transfected to express fluorescently tagged MyoII and β​H-spectrin 
using Effectene (Qiagen), per the manufacturer’s instructions. Lateral indentation 
experiments were conducted 2 days after transfection with a modified Catalyst 

AFM integrated with an Axio Observer fluorescence microscope (Zeiss). To 
determine the effect of a localized mechanical force on MyoII and β​H-spectrin 
localization, the cantilever (MLCT with a pyramidal tip; Bruker) was first brought 
into full contact, at ~50 nN setpoint force, with the glass surface on a cell-free 
area within 10 μ​m from a target cell. Next, the cell was laterally translated into 
the stationary cantilever using the piezoelectric XY stage and the NanoScope 
software (Bruker). The cantilever tip indented the edge of the cell by 2–5 µ​m. Cells 
were simultaneously imaged with a plan-apochromat ×​63/1.4 NA oil immersion 
objective (Zeiss). Time-lapse images were taken at 5-s intervals using the Micro-
Manager software (http://micro-manager.org/wiki/Micro-Manager).

Coarse-grained molecular mechanics modelling. In the coarse-grained model, 
the membrane–cortex composite is represented by a triangulated network where 
the nodes denote the crosslinking positions and the triangles resemble the meshes 
in the actin network, which is a network structure composed of proteins, such as 
actin, actin crosslinkers and MyoII. The system energy of the composite at the 
coarse-grained molecular level is calculated by:

= + + +−E E E E E , (1)ystem ending n plane urface olumes b i s v

where Ebending is the bending energy from the plasma membrane, Ein-plane is the 
in-plane elastic energy associated with the deformation of actin crosslinkers and 
the dilation of each mesh, Esurface is the surface energy of the whole cell and Evolume is 
the energy associated with the volume conservation of the cell42,61,62. Specifically, the 
bending energy mainly contributed by the plasma membrane is written as:
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The first term V l( )LC iW  is the worm-like-chain energy due to the 
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where kB is the Boltzmann constant, T is the temperature, n is the number of 
functional actin crosslinkers between two connected nodes, lmax is the maximum 
length of the edge l and p is the average persistence length of the actin crosslinkers. 
The second term in equation (3) is the energy due to the dilation/shrinking of the 
individual mesh of area Ai with the initial value Ai

0 and a dilation modulus, k ilationd . 
E urfaces  is the energy associated with the conservation of the global surface area and 
is written as:

= −E k A A1
2

( ) , (5)urface urface otal otals s t t
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where k urfaces  is the global area modulus, A otalt  is the total area of the membrane–
cortex composite and A otalt

0  is the initial total area. Similarly, E olumev  is the energy 
associated with the conservation of the global volume and has the form of:
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2
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k olumev  is the global volume modulus. Votalt  and V otalt
0  are the total volume of the 

cell and its corresponding equilibrium value, respectively. A surface mesh with 
10,000 nodes and 19,996 triangles was created for a spherical cell with a radius of 
5 μ​m. As a result, the average length of the edges is 70-nm long. For equation (4),  
the average persistence length of actin crosslinkers is on the order of 40 nm and 
the average number of actin crosslinkers, n, is 1. The values of the remaining 
parameters are: k endb  =​ 100 kBT, θi

0 =​ 0, k ilationd  =​ 100 kBT, k urfaces  =​ 1,000 kBT and 
k olumev  =​ 1,000 kBT. The motion of the nodes is calculated by Brownian dynamics 
equation, in which the driving force is the derivative of the system energy with 
respect to the local position.

The initial configuration of the system was thermally annealed at room 
temperature until the fluctuation of the system energy was negligible. This 
configuration was then mapped to the shape of a receiving cell. For simplicity, the 
protrusion has a cylindrical shape with the radius r0 and length l on the surface 
of a cell with a diameter of 10 μ​m. The tip of the protrusion was a spherical cap 
of a radius r0. The final state of the system was achieved after 20 s of Brownian 
dynamics simulation with a time-step of 10−5 s. The area dilation of each node 
was determined by averaging of the dilation of the triangles with which the node 
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of interest was associated. The shear deformation of each node was calculated in 
a similar way. The contour of the deformation on the protrusion was plotted by 
the software Tecplot (Supplementary Fig. 7). The deformations along the length 
direction of the protrusion were obtained by the extraction tool of the software.

Statistics and reproducibility. Statistical significance was assessed using two-tailed 
Student’s t-test and ANOVA with Fisher’s least significant difference. P values were 
obtained using the Microsoft Excel 2010, GraphPad Prism 5 and Kaleidagraph 4.1 
softwares. The number of biological replicates for each experiment is indicated in 
the figure legends. Immunofluorescence images were representative of at least ten 
independent samples, MPA images of at least eight independent cells and western 
blots of three independent experiments.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. The C programs for the computation of the energy 
of the cells with protrusions are available from: https://pan.baidu.com/
s/1wjroHIyh7eXZQ3IjHGfRUA.

Data availability. The main data supporting the findings of this study are 
available within the article and its Supplementary Information files. All other data 
supporting the findings of this study are available from the corresponding author 
upon reasonable request.
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Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).
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subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
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