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     Tumor-Targeted Inhibition of Monocarboxylate Transporter 
     Improves T-Cell Immunotherapy of Solid Tumors

           Tongyi Huang, Qiang Feng, Zhaohui Wang, Wei Li, Zhichen Sun, Jonathan Wilhelm,

         Gang Huang, Tram Vo, Baran D. Sumer, and Jinming Gao*

           Export of lactic acid from glycolytic cancer cells to the extracellular tumor

          milieu has been reported to enhance tumor growth and suppress antitumor

         immunity. In this study, a pH-activatable nanodrug is reported for

      tumor-targeted inhibition of monocarboxylate transporter- (MCT) that

       reverses lactic acid-induced tumor immunosuppression. The nanodrug is

        composed of an MCT inhibitor (AZD) loaded inside the

       ultra-pH-sensitive nanoparticles (AZD-UPS NPs). AZD-UPS NP is produced

          by a microfluidics method with improved drug loading eciency and optimal

         nanoparticle size over sonication methods. The nanodrug remains as intact

          micelles at pH . but rapidly disassembles and releases payload upon

          exposure to acidic pH. When combined with anti-PD- therapy, AZD-UPS NP

           leads to potent tumor growth inhibition and increases survival in two tumor

         models over oral administration of AZD at dramatically reduced dose

       (>-fold). Safety evaluations demonstrate reduced drug distribution in

           heart and liver tissues with decrease in toxic biomarkers such as cardiac

         troponin by the nanodrug. Increased T-cell infiltration and reduced exhaustive

PD+Tim+          T cells are found in tumors. These data illustrate that

        tumor-targeted inhibition of MCT can reverse the immune suppressive

         microenvironment of solid tumors for increased safety and antitumor ecacy

  of cancer immunotherapy.
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    Cancer cells have upregulated glucose
    metabolism that are reprogrammed to-

 wards aerobic glycolysis (also known as
      Warburg eect), resulting in the rapid pro-

      duction and exportation of lactic acid into
  the tumor microenvironment.[] Lactate

     transport across the cancer cell mem-
    brane is mediated by monocarboxylate

    transporter proteins, which are coupled
    to the co-transportation of protons.[]

     Export of lactic acid and subsequent
     low extracellular tumor pH has been

    reported to increase tumor growth and
metastasis,[] angiogenesis,[]  and immune

suppression.[]      Lactic acid is reported as a
      potent inhibitor of function and survival of

        T and NK cells leading to blunting of im-
 mune surveillance.[]  Therefore, targeting

   monocarboxylate transporter proteins to
      reduce lactic acid export from the cancer

   cells has the potential to rescue tumor
  metabolism-induced immune evasion

 (Scheme ).
     AZD is a small molecule drug

    developed by AstraZeneca that specifi-
   cally inhibits monocarboxylate transporter

         (MCT) (Figure a). Previous report on the mechanism of ac-

        tion was mainly attributed to the accumulation of intracellular
          lactic acid, which leads to a decrease of intracellular pH and

       feedback inhibition of glycolysis, thereby deterring the prolif-
   eration of tumor cells.[]       The eect of MCT inhibition on the

      tumor microenvironment and resulting influence on antitumor

       Scheme . Tumor-targeted inhibition of monocarboxylate transporter 
     (MCT) by AZD-loaded ultra-pH-sensitive nanoparticles (AZD-UPS

        NPs) primes the tumor microenvironment for enhanced T-cell immunity
 against cancer.
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                   Figure . Preparation and characterization of AZD-UPS NPs. a) Schematic of microfluidic method to produce AZD-UPS NPs. b) Microfluidic method
                 increases encapsulation eciency of AZD in UPS nanoparticles over sonication method with dierent UPS/AZD ratios. c) Dynamic light
                      scattering and transmission electron microscopy (TEM) analysis of AZD-UPS NPs at pH . and its dissociation into unimers at pH .. The apparent

                          p  nm in the TEM images. d) pH-dependent drug release from AZD-UPS NPs in phosphate buered salineKa of the UPS polymer is .. Scale bars =

                         (PBS) over  h at  °C. At pH ., instantaneous release of AZD drug was observed after micelle dissociation whereas majority of the drug was
                          kept in the micelles at pH .. e) A binary drug release profile across the micelle transition pH of the PDPA copolymer was observed from AZD-UPS NPs
                   after  min incubation in the PBS solution. All the data are presented as mean .± SD, n =

           immunity is not clear. A challenge in the clinical use of AZD

         arises from dose-limiting toxicities in the heart and/or eye tis-
         sues, where MCT expression is high, due to nonspecific drug

       distribution from oral administration. Adverse side eects such
        as rise of cardiac troponin levels and electroretinogram changes

 were observed. []     Tumor-targeted delivery of AZD exploiting
         tumor acidotic metabolism has the potential to increase the ther-

         apeutic window of the drug while allowing the investigation of

    MCT inhibition on antitumor immunity.
       Our lab has previously synthesized a library of ultra-pH-

   sensitive (UPS) micelle nanoparticles[]    for tumor imaging and
 therapeutic applications.[]     UPS nanoparticles remain as intact

        micelles at physiological pH (.) during blood circulation but
        disassembles when the environmental pH is dropped below the
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                     Figure . AZD-UPS NPs inhibited export of lactic acid from cancer cells and improved drug pharmacokinetics in a mouse tumor model. AZD alone
                          or pretreatment of AZD-UPS NP at pH . eectively decreased lactate secretion a) and pH change b) in the cell culture medium at  h. Intact AZD-
                        UPS NPs at pH . did not aect the lactate secretion or pH change compared to the control groups. c) Plasma concentration of AZD following
    oral administration ( mg kg  −                 ), intravenous administration of AZD alone and AZD-UPS NP at the same drug dose ( mg kg−   ). d) AZD

                     distribution inheart, liver, kidney and tumor tissues h after administration. AZD concentrations werenormalized per gramof tissue and expressed
  as ng g−                              . *** SD, a,b) –.P < ., ** ., * . All the data are presented as meanP < P < . (nonparametric Student’s t-test) ± n = ; c,d) n =

   micelle transition pH (pHt       ) upon exposure to tumor acidic mi-

       lieu. Recently, positron emission tomography (PET) imaging of
a radionucleotide (    Cu)-functionalized UPS nanoprobe demon-

      strate dramatic increase of nanoparticle accumulation through
      acid-triggered “capture and integration mechanism” in multiple

       tumor models over non-pH sensitive, passive targeting PEG-b-

         poly(,-lactic acid) micelles. In this study, we investigate the use
        of UPS nanoparticles for tumor-targeted delivery and release of

        AZD to prime the tumor microenvironment for T-cell ther-
         apy of cancer. We hypothesized that UPS NP would maximize

          the ecacy of AZD by targeted delivery to tumor areas of
        greatest MCT activity and thus most susceptible to inhibition.

        We also hypothesized that this selective, self-limiting delivery ap-
         proach would allow decreases in the overall dose of AZD

    leading to improved safety outcomes.
       Because of its mild hydrophobicity (partition coecient log

  P = .[]         ), loading of AZD in a representative UPS mi-
    celle, PEG- -(poly(dipropylaminoethylmethacrylate) (PDPA, Fig-b

       ure a) is dicult using conventional encapsulation methods
       such as sonication. Microfluidics-based methods have been re-

     ported to improve drug loading eciency []   by precise con-
     trol of liquid streams for mixing.[,]     We set up a microflu-

      idic device according to the IDEX method[,c]   with one central
           flow, two side flows and one outlet with a curved channel struc-

         ture (Figure a). AZD and PDPA polymer in dierent ra-
        tios were dissolved in tetrahydrofuran with .% dimethyl sul-

        foxide, and introduced to the microfluidic device through the
         central channel at a flow rate of  mL h−    . Water was intro-

         duced through the two side channels at . mL h−   . Upon mix-

       ing in the junction, AZD-loaded UPS nanoparticles (AZD-
         UPS NPs) are generated in a single nanoprecipitation step. The

      encapsulation eciency after purification is % (formulation
         M with a PDPA/AZD ratio of :, analyzed by HPLC),
         which is higher than the sonication method (.% in formula-

          tion S, Figure b, Table S and Figure S, Supporting Informa-
         tion). The diameter of AZD-UPS NPs by microfluidics method is

            . .,± ±. nm, with a polydispersity index (PDI) of .
         which is smaller than the drug-loaded micelles from the sonica-

          tion method (. . nm in diameter) (Table S, Supporting±

        Information). This result is consistent with the reported litera-

         ture that rapid mixing in a microfluidic device reduced nanopar-
       ticle aggregation resulting in smaller and more homogeneous

nanoparticles.[]

       AZD-UPS NPs exhibit similar ultra-pH sensitivity across the

          transition pH of . for the PDPA polymer (Figure Sa, Support-
      ing Information) to the drug-free PDPA micelles,[]  likely due

          to the neutral and mildly hydrophobic (log P = .) character-
          istic of the drug. We analyzed the particle size and morphology

        by dynamic light scattering (DLS) and transmission electron mi-
         croscopy (TEM) (Figure c). At pH ., spherical micelles were

          formed with hydrodynamic diameter of . . nm; at pH±

          ., which is below the apparent p a of PDPA (.), micellesK

          dissociated into unimers (. ± . nm in diameter). The pH-
        dependent release kinetics of the AZD-UPS micelles was quan-

        tified by HPLC after micelle incubation with phosphate buered
            saline (PBS) solution at pH . and . over  h (Figure d,
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                    Figure . AZD-UPS NP showed antitumor ecacy and synergy with anti-PD- therapy. a) Treatment regimen in TC- and BF tumor models. b)
               In TC- model, CBL/ mice (n = × per group) were inoculated with             TC- tumor cells and treated with dierent drugs. Tumor growth and

                        Kaplan–Meier survival curves are shown. c) In the BF tumor model, tumor growth inhibition and survival data in CBL/ mice (n =  per group)
                   were analyzed. In (b,c), data are presented as means ± SEM. ***P < ., **P < ., *P < ..

         Figure Sa, Supporting Information). At pH ., less than %
            of drugs leaked out of the PDPA micelles over  h. In con-

trast, majority ( %) of the drug was instantaneously re->

           leased from the micelles at pH . within  min. Further pH-

         dependent drug release studies show a binary o/on drug re-
        lease phenotype after  min incubation across the apparent

          p a (.) of the PDPA polymer (Figure e, Figure Sb, Sup-K
         porting Information). At pH higher than ., drugs were sta-

        bly encapsulated inside the PDPA micelles; when pH dropped
         below ., micelle disassembly led to rapid release and dose

dumping.
         To investigate the drug activity, we quantified the changes of

           lactate and pH in the culture medium of TC- cancer cells. Free
   AZD ( × −      ) significantly decreased the secretion of

          lactate and inhibited the lowering of pH in the medium com-
            pared to the untreated control over  h (p < ., a,b).Figure 

     Intact AZD-UPS NPs ( × −     eective AZD concen-
           tration) had no significant eect (p = .) on medium pH or

        lactate concentration primarily due to drug encapsulation in the
          micelles. Pretreatment of AZD-UPS NPs in pH . buer to in-

         duce pH-activated drug release followed by addition into the cell
        culture medium exhibited eects similar to free AZD. Sea-

       horse assay further supported the micelle-modulated drug eect
        in response to glucose addition (Figure Sb, Supporting Informa-

        tion). These data illustrate AZD-UPS NPs eectively blocked the
         drug eect in the micelle state; upon pH-triggered drug release,

           AZD was able to inhibit the export of lactic acid from cancer
cells.

        We utilized TC- tumor-bearing mice to evaluate the pharma-
       cokinetics and biodistribution of AZD drug from dierent

       formulations. AZD by oral administration ( mg kg−,
       dose recommended by AstraZeneca) exhibited rapid oral absorp-

           tion and high peak drug concentration of  ±  g mL− at
         min (Figure c), similar to the value from literature.[]  In con-

        trast, intravenous injection of AZD-UPS NP at much reduced
   dose ( mg kg−       ) resulted in significantly decreased peak con-

     centration (. ± . g mL−       ) at  min but comparable plasma
        concentrations at  h. Intravenous injection of free AZD

          drug at the same dose as AZD-UPS-NP (i.e.,  mg kg−) showed
         rapid clearance of the drug. The area under the concentration-

         time (AUC) value of AZD-UPS NP is  ±  g mL− h−, ap-
         proximately .-fold over free AZD (. ± . g mL− h−).

         Tissue distribution analysis was performed in the heart, liver, kid-
          ney, and tumor tissues  h after the administration (Figure d).

        AZD-UPS NP achieved significantly higher levels of tumor accu-
         mulation of the AZD drug (. . g g±

−   of tissue) over

      free drug (. . g g±
−      , .). Remarkably, AZD-p =

           UPS NP delivered even higher drug dose to the tumors over oral
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                      Figure . Immune profiles of the TC tumor after dierent treatment regimens. a) Scheme of the flow cytometry analysis of TC- tumors. b) Repre-
     sentative flow dot plots of H-Db                   HPV E (RAHYNIVTF) tetramer staining of CD+ T cells in the tumor. c) Flow cytometry data show the significant
                       increase of E-specific CD+ T cells after combined treatment of AZD-UPS NP with anti-PD-. d) Representative flow dot plots of PD and TIM- of

                CD+ T cells in the tumor after treatment. e) Flow cytometry data show the decrease of PD+Tim+       CD T cells and increase of PD+ Tim−  CD T
                        cells in TC- tumors after combined treatment. In (c,e), data are presented as means ± SD, n = . Statistical significance was calculated by Student’s
         t-test: *** ., ** ., * ..P < P < P <
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           administration of a -fold higher dose of AZD (. ± . g

g−           ). In contrast, drug distribution in the heart and liver tissues
         was significantly reduced in AZD-UPS NP group over oral ad-

       ministration of AZD. Safety evaluations show AZD-UPSNP
         and oral administration of AZD did not cause weight loss

        during two weeks of treatment (Figure Sa,b, Supporting Infor-
       mation), while oral administration of AZD significantly in-

        creased the levels of cardiac troponin-I (cTnI), alanine amino-
      transferase (ALT), and aspartate aminotransferase (AST), indicat-

         ing that encapsulating AZD into UPS NP can reduce liver
      and cardiac toxicities (Figure Sc,d, Supporting Information).

        We investigated the antitumor ecacy of AZD-UPS NP in
        combination with anti-PD- therapy to evaluate the eect of

      priming the tumor microenvironment for T-cell immunother-
         apy (Figure ). We employed two animal tumor models, TC-

        tumors and BF melanoma for the study. Three intravenous
        injections of AZD-UPS NPs (each at  mg kg −  AZD dose)

          were administered on day , , and  after tumor inoculation.

          For the free drug control, oral administration at  mg kg−

             AZD drug was performed twice a day from day  to  (a total

           of  doses). The cumulative dose is -fold greater in the oral
        AZD group. In the combination groups, anti-PD- was i.p.

        injected on day  and  after tumor inoculation.
        Results show in the TC- model, treatment with AZD-UPS

        NP led to significant tumor growth inhibition (tumor volume
     = ± ×. .   mm         ) over untreated group (. . ± × 

mm            , p = .) on day  after tumor inoculation, whereas orally
      administrated AZD (. ± . ×  mm     , p = .) showed

       insignificant dierences over control (Figure b). The synergistic
         eect of AZD-UPS NPs with anti-PD- treatment was also de-

         tected in the TC- model (. ± . ×  mm    ), which is signifi-
         cantly better than the combination of oral AZD and anti-PD-

      (. . ± ×
mm         , p = .). Long-term survival was also

         improved ( .) between the two groups. The therapeuticp =

        synergy in combining AZD-UPS NP with anti-PD- therapy was
        further validated in the BF melanoma tumor model. Reduc-

            tion in tumor growth (p < .) and prolonged survival (p < .)
          were observed in the combination group over any single arm con-

         trol (Figure c). These results support the premise that inhibiting
       tumor acidosis can improve response to anti-PD- treatment. []

        We investigated the changes of immune profiles after treat-
        ment with anti-PD- alone, AZD-UPS NP alone or combination

           therapy in the TC tumors (Figure a). We first examined the ra-
        tio of tumor-infiltrating T cells over cancer cells (CD−) from

        dierent groups. Tumor tissues were dissociated into single cells
           and the percentage of infiltrating T cells were analyzed by flow cy-

        tometry. Compared to the untreated mice, AZD-UPS NPs alone

        or anti-PD- alone did not significantly increase tumor infiltrat-
   ing T cells (CD+CD+       cells, p > .) or antigen-specific CD+

   T cells (E tetramer + CD+ CD+       cells, p > .) compared to un-
       treated group (Figure b,c, Figure S, Supporting Information).

        In contrast, AZD-UPS NPs with anti-PD- treatment results in
          significant increase of both tumor infiltrating T cells (p = .)

  and antigen-specific CD+       T cells ( .), which supportsp =

         the correlation of antitumor ecacy with T cell infiltration inside

 the tumors. []      Furthermore, we evaluated the exhaustion status
    of T cells in tumors.[]     Previous studies reported that PD+Tim−

        CD+ T cells have better cytotoxic functions whereas coexpres-
         sion of PD and TIM- is associated with T-cell exhaustion.  [,]

       AZD-UPS NPswith anti-PD- treatment showed distinctively in-

 creased PD+Tim−    eector and decreased PD+Tim+  CD T
        cell responses, compared to single arm controls (Figure d,e).

          The number of CD+ T cells and Tregs between dierent treat-
        ment groups exhibited no significant changes (Figure S, Sup-

       porting Information). These results illustrate anti-PD- alone or
          AZD-UPS NP alone were not able to prime a durable immune

        response to TC- tumors due to the immunosuppressive eects
          of tumor acidosis, while the combination led to a significant im-

       provement in CD T cell responses against tumors.
        In summary, we report a novel nanodrug composition consist-

        ing of an MCT inhibitor (AZD) encapsulated in ultra-pH
      sensitive micelles for tumor-specific priming of microenviron-

       ment to overcome tumor immune evasion.Microfluidicsmethod
      enabled successful encapsulation of AZD into nanoparti-

          cles. A binary drug release profile was observed across the phase
          transition pH of the polymer carrier with deposition of the drug
         dependent on tumor acidosis and thus MCT activity. This spe-

         cific targeting of active MCT sites by AZD-UPS nanodrug al-
       lows for tumor-selective inhibition of lactic acid exportation,

       which primes antitumor immunity with reduced systemic tox-
        icity at dramatically reduced drug dose. In combination with

     checkpoint blockade, AZD-UPS nanodrug eectively inhibited
        tumor growth by enhancing antigen-specific CD T cell immu-

        nity against tumors. This study establishes the preclinical proof
        of concept to target monocarboxylate transporters to prime tu-

      mor microenvironment to augment cancer immunotherapy and
           to exploit the biological activity of a protein target to improve drug

   delivery specificity and ecacy.
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