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Abstract
Purpose: Pancreatic cancer is the fourth leading cause of cancer-related deaths, in which the 5-year

survival rate is less than 5%. Current standard of care therapies offer little selectivity and high toxicity.

Novel, tumor-selective approaches are desperately needed. Although prior work suggested that b-lapa-
chone (b-lap) could be used for the treatment of pancreatic cancers, the lack of knowledge of the

compound’s mechanism of action prevented optimal use of this agent.

Experimental Design: We examined the role of NAD(P)H:quinone oxidoreductase-1 (NQO1) in

b-lap–mediated antitumor activity, using a series of MIA PaCa-2 pancreatic cancer clones varying in NQO1

levels by stable shRNA knockdown. The antitumor efficacy of b-lap was determined using an optimal

hydroxypropyl-b-cyclodextran (HPb-CD) vehicle formulation in metastatic pancreatic cancer models.

Results: b-Lap–mediated cell death required �90 enzymatic units of NQO1. Essential downstream

mediators of lethality were as follows: (i) reactive oxygen species (ROS); (ii) single-strand DNA breaks

induced by ROS; (iii) poly(ADP-ribose)polymerase-1 (PARP1) hyperactivation; (iv) dramatic NADþ/ATP
depletion; and (v) programmed necrosis. We showed that 1 regimen of b-lap therapy (5 treatments every

other day) efficaciously regressed and reduced human pancreatic tumor burden and dramatically extended

the survival of athymic mice, using metastatic pancreatic cancer models.

Conclusions: Because NQO1 enzyme activities are easily measured and commonly overexpressed (i.e.,

>70%) in pancreatic cancers 5- to 10-fold above normal tissue, strategies using b-lap to efficaciously treat

pancreatic cancers are indicated. On the basis of optimal drug formulation and efficacious antitumor

efficacy, such a therapy should be extremely safe and not accompanied with normal tissue toxicity or

hemolytic anemia. Clin Cancer Res; 17(2); 275–85. �2011 AACR.

Introduction

Pancreatic cancer is the fourth leading cause of cancer-
related death in the United States. (1). Current standard
therapies for these patients include surgery, often in com-

bination with radiotherapy and/or chemotherapy, and
offer a 5-year survival rate of less than 5%, due to the
aggressive and invasive nature of this disease and consider-
able normal tissue toxicity in patients. Most pancreatic
cancer patients are not candidates for surgical intervention.
They present with locally advanced or metastatic disease
and have a median survival of 6–10 or 3–6 months,
respectively (2, 3). Thus, new approaches based on
tumor-selective targets are desperately needed to effica-
ciously treat pancreatic cancer. As a result, considerable
resources have been invested in the development of novel
therapies that target molecular aberrations in pancreatic
cancers (3–5), with the hope of exploiting specific markers
that are elevated in pancreatic cancer.

One "marker" commonly elevated in various human
cancers (6, 7), and particularly in pancreatic tumors (8–
11), is NAD(P)H:quinone oxidoreductase-1 (NQO1; E.C.
1.6.99.2). NQO1 was overexpressed greater than 10-fold
versus associated normal tissue in more than 70% of
patients (8–11). It detoxifies most quinones by catalyzing
a 2-electron reduction using NADH or NADPH (12),
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converting them to hydroquinones, bypassing the nor-
mally unstable and highly reactive semiquinone intermedi-
ates. Hydroquinones are then typically and readily
conjugated with glutathione (GSH) via glutathione-S-
transferase and excreted, constituting a protective mechan-
ism against quinone-mediated toxicity (13). Dicoumarol
[3-30-methylene-bis(4-hydroxy-coumarin); DIC] is a fairly
specific NQO1 inhibitor that competes with NADH/
NADPH substrate binding.

NQO1 can, however, catalyze certain quinones to more
reactive DNA-damaging agents. These "bio-activation"
reactions result in cytotoxic alkylating and/or intercalating
quinones and include mitomycin C (MMC), streptonigrin
(STN), and 3-hydroxy-5-aziridinyl-1-methyl-2-[1H-indole-
4,7-dione]prop-b-en-a-ol (EO9; ref. 14). Exposure to these
3 agents results in DNA lesions in direct linear proportion
to NQO1 levels in tumor and normal tissue (6, 15).
Unfortunately, the clinical efficacy of these agents was
greatly limited due to resistance caused by tumor-related
DNA repair processes (16) and normal tissue toxicity (17).

b-Lapachone (b-lap, 3,4-dihydro-2,2-dimethyl-2H-
naphtho[1,2-b]pyran-5-6-dione) also requiresNQO1activ-
ity for effective killing of NQO1-overexpressing cancer cells,
while causingminimal effects to neighboring "normal" cells
that lack, or have low levels of, the enzyme (18–21). How-
ever, the mechanism of action of b-lap in vitro was signifi-
cantly different from that of MMC, STN, or E09. b-Lap
undergoes an NQO1-dependent "futile cycle," wherein
�60molesofNAD(P)Hareusedpermoledrug in5minutes
(18, 22). As a result, dramatic elevation of reactive oxygen
species (ROS) and released Ca2þ from endoplasmic reticu-
lum (ER) stores were noted and are required for cell death
(19–21). Unlike E09, STN, or MMC, b-lap does not seem to
cause alkylation of DNA. b-lap (i.e., clinically formulated as
ARQ 501) has completed phase I trials in pancreatic cancer
patients (23). Although tumor responses were noted, the
studies were limited by hemolysis caused by incorrect regi-
men application and hydroxylpropyl-b-cyclodextran (HPb-
CD) vehicle formulation.

We previously showed antitumor activities and mechan-
ism of action of b-lap–mediated cell death in vitro in
endogenous NQO1-expressing pancreatic (24, 25), and
forced NQO1-overexpressing prostate, breast, and non–
small cell lung cancer (NSCLC) cells (18, 19, 21, 26). A
relationship between NQO1 levels and lethality in vitro
using endogenous knockdown has not been established for
this drug. Here, pancreatic cancer clones, whose endogen-
ous NQO1 levels were stably knocked down in a gradient
and ordered manner, were used to explore NQO1 levels
required for b-lap–induced lethality. We show that a
threshold level of NQO1 enzyme activity is required for
b-lap–induced cell death responses and define key reac-
tions essential for b-lap–induced cytotoxicity. We show
that b-lap is an extremely efficacious agent against pan-
creatic cancers with endogenously elevated NQO1 levels,
with extensive reductions in tumor burden, dramatic tumor
growth delays, and extended survival in a metastatic pan-
creatic cancer animal model. Minimal to no toxicity to
normal tissue or hemolytic anemia was noted using an
optimal regimen.

Our current studies show that pancreatic tumors expres-
sing NQO1 levels of at least 90 U would be responsive to
b-lap therapy with minimal to no side-effects. Develop-
ment of novel delivery vehicles, for example, using nano-
particles, to increase tumor-selective delivery should
further augment the antitumor efficacy of b-lap.

Materials and Methods

Reagents and chemicals
b-Lap was synthesized and purified by us (21). DIC,

hydrogen peroxide (H2O2), staurosporine, Hoechst
33258, bovine serum albumin, cytochrome c, and propi-
dium iodide were from Sigma-Aldrich. 5-(and 6-)Chloro-
methyl-2,7-dichlorodihydrofluorescein diacetate (DCFDA)
was purchased from Invitrogen Life Technologies. HPb-CD
(>98% purity) was obtained from Cyclodextrin Technolo-
gies Development, Inc. b-Lap–HPb-CD was prepared as
previously described (27).

Cell culture and transfections
MIA PaCa-2 cells were obtained from Dr. Joseph J.

Cullen (University of Iowa). Human pancreatic cancer cell
lines ASPC1, BXPC3, CFPAC-1, HS766T, Capan 1, and
Capan 2 were obtained from the ATCC. All cells were
grown in Dulbecco’s modified Eagle medium (Invitrogen)
as described (25) and were mycoplasma free. The human
shRNA-NQO1 (RHS1764-9691437: 50-TGCTGTTGACAG-
TGAGCGCGGGATGAGACACCACT GTATTTAGTGAAGC-
CACAGATGTAAATACAGTGGTGTCTCATCCCATGCCTAC-
TGCCTCGGA-30) retroviral vector was purchased from
Open Biosystems. Stable shRNA knockdown clones
(KD17-1, KD17-3, and KD17-7) were generated by
infecting MIA PaCa-2 cells with polybrene-supplemented
medium obtained from Phoenix packaging cells trans-
fected with the human retrovirus vector targeting NQO1
as described earlier (28). Cells containing stable

Translational Relevance

Pancreatic cancer is the fourth leading cause of can-
cer-related deaths in the United States. Current standard
therapies for these patients include surgery, often in
combination with adjuvant radiotherapy and/or che-
motherapy, and offer a 5-year survival rate of less than
5%. b-Lapachone (b-lap; clinically formulated as ARQ
501) has completed phase I trials in pancreatic cancer
patients. Although tumor responses were noted, the
studies were limited by hemolysis caused by incorrect
regimen application and hydroxylpropyl-b-cyclodex-
tran (HPb-CD) vehicle formulation. However, our in
vitro as well as in vivo data clearly show that b-lap, in an
optimal formulation, is ideally suited for treating pan-
creatic cancer.
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scrambled controls (shRNA-SCR) were also generated
and were referred to as nonsilencing (NS) cells. Indivi-
dual clones were isolated by limiting dilution in media
containing puromycin (1 mg/mL) and screened for
NQO1 expression levels individually as indicated. All
experiments were carried out without antibiotics. For
bioluminescence (BLI) analyses, MIA PaCa-2 cells were
infected with a lentiviral construct that expresses the
luciferase (Luc) gene under the control of a strong

promoter, the cytomegalovirus (CMV-Luc) promoter,
as described (29).

NQO1 enzyme assays
NQO1 enzyme levels (Fig. 1F Table; Supplementary

Table 1) were determined from triplicate S9 whole-cell
extracts, using NADH (200 mmol/L) as an immediate
electron donor and menadione (10 mmol/L) as an inter-
mediate electron acceptor as described (18, 30). Enzyme
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Figure 1. Functional shRNA-NQO1 knockdown protects from b-lap–induced cell death. A, model depicting the futile cycling of b-lap by NQO1; B,Western blot
and enzymatic analyses for NQO1 in MIA PaCa-2 parental cells, shRNA-NQO1 knockdown clones (KD17-1, KD17-3, and KD17-7) and nonsilencing
control clone (NS, MIA PaCa-2 shSCR). NQO1 protein expression and enzyme levels were assessed as in "Material and Methods." hMSH2 levels were
monitored for loading. C, relative survival assays in MIA PaCa-2 cells, NS- and NQO1-knockdown clones (KD17-1, KD17-3, KD17-7) were mock-treated
or exposed to b-lap at the indicated doses for 2 hours, with or without DIC (50 mmol/L). Data are means � SE for 3 independent experiments done in triplicate
(***P < 0.001). D, relative survival of b-lap (6 mmol/L, 2 hours)-exposed, NS- or NQO1-knockdown MIA PaCa-2 cells titrated with increasing doses of DIC.
Statistical significance (***P < 0.001) for relative survivals (C and D) were evaluated using ANCOVA as in "Materials andMethods." E, LD50 of b-lap inMIA PaCa-
2 knockdown clones and pancreatic cancer cell lines with varying NQO1 levels [BXPC3, Capan1 (NQO1 enzymatic activity: 540 � 8 U; b-Lap LD50: 2.6 � 0.5
mmol/L, 2 hours; b-Lap þ DIC LD50: >20 mmol/L, 2 hours), ASPC1, HS766T, Capan2 (NQO1 enzymatic activity: 1,100 � 3; b-Lap LD50: 1.4 � 0.2 mmol/L, 2
hours; b-LapþDIC LD50: >20 mmol/L, 2 hours), and CFPAC-1)];R2¼ 0.9053. F, analyses of b-lap lethality in various pancreatic cancer cells with or without DIC
(50 mmol/L) or BAPTA-AM (5 mmol/L, 1 hour) pretreatments. LD50 calculations for various human pancreatic cancer cell lines were done by relative survival
assays as described in "Materials and Methods." NQO1 activity units� SE were assessed and defined in "Materials and Methods." DIC1, LD50 values for cells
treatedwith various doses of b-lap for 2 hours in the presence of DIC (50 mmol/L, 2 hours). BAPTA2, LD50 values for cells pretreatedwith 5 mmol/L of BAPTA-AM
for 1 hour followed by treatment with various doses of b-lap for 2 hours. All experiments were done 3 times in triplicate. Shown are means � SE.
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units (U) of NQO1 were calculated as nmol of cytochrome
c reduced/min/mg of protein, based on initial rate of change
in absorbance at 550 nm.

Relative survival assays
Relative cell survival levels from pancreatic cancer cells

seeded at 5 � 103 per well of 48-well plates were deter-
mined using 7-day DNA assays as previously described
(18). Results were reported as means � standard error
(SE) from at least 3 independent experiments done in
sextuplicate.

ROS analyses
Disulfide glutathione (GSSG) and total GSH levels using

spectrophotometric recycling assays and % GSSG normal-
ized to protein content measured by Lowry assays (31)
were assessed as previously described (32). ROS formation
was further quantified by assessing digital images of the
conversion of nonfluorescent 5 mmol/L of DCFDA to its
fluorescent derivative at indicated times with a fluorescent
microscope (Leica Microsystems) as described (33). All
data were graphed as means � SE for experiments per-
formed 3 times, each in triplicate.

Alkaline comet assays
DNA single- and double-strand breaks (SSB and DSB,

respectively) and base damage were assessed using alkaline
comet assays (TREVIGEN). Digital photomicrographs of
comet tail lengths were quantified from experiments done
3 or more times, each in duplicate (21).

Nucleotide analyses
Changes in intracellular NADþ levels were measured and

expressed as percentage treated divided by control (%T/C,
�SE) from at least 3 individual experiments, each in
duplicate (21). ATP levels were analyzed from whole-cell
extracts by using CellTier-Glo luminescent cell viability
assays (Promega). Data were graphed as means � SE of
experiments done 3 or more times in triplicate for ATP, or 3
or more independent experiments for NADþ.

Flow cytometry
Cell-cycle distribution and apoptotic populations using

TUNEL staining were analyzed as previously described (28,
34) using a FACS Calibur flow cytometer (BD Biosciences)
and CellQuest software. Results from experiments repeated
at least 3 times, each in duplicate, are presented. Apoptosis
was observed from all phases of the cell cycle as described
(35).

Immunoblot analyses
Whole-cell extracts and Western immunoblots were pre-

pared and developed as described (28). For Western blots,
primary antibodies and dilutions were as follows: poly
(ADP-ribose) or PAR (BD Pharmingen), 1:1,000; human
MutS homolog-2 (hMSH2, Ab-1; Oncogene), 1:500; p53
(DO-1; Santa Cruz Biotechnology), 1:5,000; and b-actin
(Santa Cruz Biotechnology), 1:20,000. An a-human

NQO1 antibody (1:5,000 dilution) was kindly provided
by Dr. David Ross (University of Colorado Health Science
Center). Results shown are representative of experiments
performed at least 3 times.

Antitumor efficacy
A metastatic (spleen to liver tumor burden) pancreatic

tumor model was used to evaluate b-lap efficacy. Pancreas
tumors were generated by inoculating 2.5 � 105 Luc-
tagged MIA PaCa-2 cells into the spleens of female mice
weighing 20 to 25 g as described (36). Mice were ran-
domly distributed so that average group (5 mice/group)
body weights were not statistically different. Four weeks
after implantation, and after random imaging, mice were
treated with tail-vein injections of b-lap–HPb-CD or HPb-
CD at various doses every other day for 5 treatments (i.e.,
1 regimen). Mouse body weights were measured thrice
weekly. Mice were sacrificed when metastatic tumor bur-
den reached 20% of initial body weight. Survival and
body weight data were graphed from 3 separate studies.
Separately, ex vivo Luc-tumor volumes (luciferase levels)
of excised spleens were evaluated using a bioluminescent
imager (Xenogen Vivovision IVIS Lumina) for tumor
burden and reported as means � SE from 3 separate
experiments. Spleen, liver, and pancreatic tissues were
removed for histologic examination; tissues were snap-
frozen in liquid nitrogen for Western blot analyses to
confirm NQO1 expression. In another series of studies,
the spleens of athymic mice were inoculated with 2.5 �
105 Luc-tagged Pan-GFP murine pancreatic tumor cells
expressing human NQO1 (hNQ2) by lentiviral infection
and similar spleen to liver tumor burden metastatic
analyses performed (Supplementary Figs. 2 and 3).

Statistical analyses
Log-rank tests were applied to survival analyses (Kaplan–

Meier curves). All in vivo statistical analyses were conducted
using GraphPad Prism software. Statistical analyses of
survival data in vitrowere conducted using linear regression
analyses. Analyses of covariance (ANCOVA) and nonlinear
regression models and overall P values were simulta-
neously calculated, comparing intercepts and slopes for
different treatments. In nonlinear regression models, b-lap
LD50 doses (denoted as Y) were fitted with NQO1 activities
(denoted as X) by Y ¼ a exp(�bX) þ c, where a, b, and c
were fitting constants. P values were 2-sided, and statistical
calculations were carried out by SAS (Service Pack 4) for
Windows and SigmaPlot.

Results

NQO1 was a key determinant of b-lap cytotoxicity in
human pancreatic cancer cells

Prior studies from our laboratory used forced NQO1
overexpression via CMV-directed cDNA transfection into
NQO1*2 polymorphic breast, prostate, or NSCLC cells to
elucidate the mechanism of action of b-lap. Because
forced NQO1 overexpression could result in the
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localization of the enzyme into compartments that are
not physiologic, we knocked down NQO1 levels in pan-
creatic cancer cells that have naturally elevated levels of
this 2-electron oxidoreductase. This allowed us to deter-
mine the threshold of NQO1 level (in enzymatic units) at
which b-lap treatments were no longer effective, espe-
cially given the mechanism of action of this drug
(Fig. 1A). MIA PaCa-2 cells that have �400 NQO1 enzy-
matic units (U) were infected with retroviral shRNA
specific to the 50-untranslated region (UTR) of NQO1
mRNA or with an identical shRNA lentiviral vector driv-
ing nonspecific (NS) siRNA expression as defined in
"Materials and Methods." Cell lines containing between
400 (clone NS) to 50 (clone 17-7) NQO1 units were
isolated (Fig. 1B). Exposure of parental (410 U), NS (400
U), and clone 17-3 (�90 U) cells with varying doses of
b-lap resulted in statistically similar lethalities (indicating
LD50 values of �4.5 mmol/L; Fig. 1C) that were blocked
with DIC (Fig. 1C). Interestingly, clones 17-1 and 17-7,
with 70 and 50 U, respectively, resulted in significant
resistance to b-lap under the same treatment conditions
(Fig. 1C), with LD50 values of �10 to 12 mmol/L, respec-
tively. To dissect the responses of the clones further, cells
were treated with a fixed dose of b-lap (6 mmol/L,
2 hours), while varying DIC concentrations. Unlike the
NS clone, in which �5 mmol/L DIC was required for
complete protection from b-lap, all 3 knockdown clones
required significantly less DIC (�1–2 mmol/L) for complete
protection against b-lap (Fig. 1D). When LD50 values of NS
and knockdown clones (closed squares), and a series of
available pancreatic cancer cells [Fig. 1E (open circles) and
Fig. 1F Table), were graphed against expressed NQO1 levels
(U), a clear biphasic curve was noted with a lethality
inflection response to b-lap noted between 90 and 100
enzymatic units of NQO1 (Fig. 1E). These data strongly
suggested that NQO1 levels were critical to b-lap lethality
but that a mere 90 to 100 enzymatic units were required for
lethality (Fig. 1E and F Table) due to NQO1 recycling of
b-lap. In cells with higher NQO1 enzymatic activity, NAD
(P)H (electron donor) most likely became rate-limiting, in
which case higher NQO1 levels did not confer enhanced
lethality and lowered LD50 values for b-lap treatments in
pancreatic cancer cells (Fig. 1E).

b-Lap lethality required released calcium (Ca2þ) from
ER stores
We previously showed in human breast, NSCLC, and

prostate cancer cells that NQO1-dependent lethality caused
by b-lap depended on Ca2þ release from ER stores (19–21,
37). Pretreatment of such NQO1 endogenously overex-
pressed cancer cells with BAPTA-AM, a specific intracellular
Ca2þ chelator, spared b-lap lethality without affecting DNA
damage caused by this agent (19–21, 37). In a similar
manner, 60-minute pretreatment of various pancreatic
cancer cells with nontoxic doses of 5 mmol/L of BAPTA-
AM prevented cell death, showing the universal require-
ment of released intracellular ER Ca2þ in b-lap lethality (Fig
1F Table).

b-Lap–induced ROS formation, DNA damage, poly
(ADP-ribose)polymerase-1 hyperactivation, and
nucleotide depletions were NQO1-dependent

NQO1-knockdown MIA PaCa-2 clones were then used
to delineate the mechanism by which b-lap induced cell
death. The futile cycling of b-lap by NQO1, specifically its
back-reaction, in which the hydroquinone is converted to a
semiquinone and then back to b-lap (Fig. 1A), caused
dramatic formation of ROS. Significantly reduced ROS
formation in b-lap–treated NQO1-knockdown MIA
PaCa-2 clones were noted by lowered % GSSG (Fig. 2A)
and DCFDA fluorescence (Fig. 2B) in direct proportion to
NQO1 enzymatic activities. Concomitant decreased DNA
lesion formation monitored by alkaline comet assays
(Fig. 2C and D) was also noted in the knockdown clones
versus NS cells; interestingly, no DNA damage was appar-
ent when cells were analyzed by neutral comet assays, as
previously reported in endogenously NQO1-overexpressed
breast, prostate, and NSCLC cells (19, 21). Thus, DNA
lesions other than DSBs are formed in response to b-lap
exposures. DIC coaddition completely blocked NQO1-
mediated, b-lap–induced SSBs and base damage.

We previously reported that b-lap induced programmed
necrosis involving poly(ADP-ribose)polymerase-1 (PARP1)
hyperactivation as a result of released ER Ca2þ and extensive,
threshold-reaching DNA damage events, particularly SSBs
and base damages (19, 21, 38). Exposure ofMIA PaCa-2 cells
that endogenously overexpressed NQO1 with b-lap resulted
in extensive PARP1 hyperactivation as measured by PAR
formation within 10 to 90 minutes, which was completely
blocked by DIC (Fig. 3A). As a positive control, exposure of
cells to supra-lethal H2O2 doses caused extensive SSBs and
base damages and hyperactivation of PARP1. Decreased
PARP1 hyperactivation was noted in direct correlation to
loss of NQO1 enzymatic activity in b-lap–exposed MIA
PaCa-2 knockdown clones (compare NS clone with ordered
NQO1-knockdown MIA PaCa-2 clones; Fig. 3B and C).

b-Lap is one of only 3 agents (others are supra-lethal
doses of MNNG or H2O2) known to cause hyperactivation
of PARP1 and dramatic losses of total intracellular NADþ

levels, ultimately resulting in corresponding dramatic
losses of ATP in exposed cells (19, 21, 39). However,
b-lap is the only known agent that induces PARP1 hyper-
activation with concomitant NADþ/ATP losses at doses
achievable under preclinical and clinical conditions (19,
21). b-Lap is the only known tumor-selective agent acting
in an NQO1-dependent manner, whereby DIC prevented
these responses (Fig. 4A and C). Consistent with decreased
PARP1 hyperactivation in NQO1-knockdown MIA PaCa-2
clones (Fig. 3B and C), ordered loss of NADþ (Fig. 4B) and
ATP (Fig. 4D) was inversely noted with NQO1 activities.
The more extensive NQO1 levels were knocked down in
MIA PaCa-2 clones, the weaker the losses of NADþ and
ATP, consistent with spared lethality of these clones after
b-lap treatment (Fig. 1E, closed squares represent geneti-
cally matched MIA PaCa-2 clones). We then examined a
series of pancreatic cancer cell lines from various sources
whose NQO1 levels ranged from�390 to 1,200 U, yet their
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LD50 values were all fairly similar, ranging from 1.8 to 4.2
mmol/L (Fig. 1E, open circles).

b-Lap induced programmed necrosis in pancreatic
cancer cells with endogenous NQO1 overexpression

Cell death induced by b-lap occurred via a unique
programmed necrotic mechanism, in which cells lost
energy (NADþ/ATP) but activated a default cysteine pro-
teolytic apoptotic response. This cell death response is
mediated by m-calpain and exposed cells undergo dramatic
nuclear condensation and apoptotic responses (20, 37).
Importantly, cells undergoing this response showed diag-
nostic m-calpain–dependent p53 proteolytic cleavage
events (20, 37). MIA PaCa-2 cells responded in an identical
manner to b-lap as breast, prostate, and NSCLC cancers
that exhibit endogenous NQO1 overexpression (19, 21,
26), inducing dramatic apoptotic (TUNELþ cells, Fig. 5A
and B) responses and atypical proteolysis of p53 (see �43-
kDa p53 cleavage fragment, Fig. 5C) at doses correspond-
ing to b-lap cytotoxicity (Fig. 1). Significant decreases in

apoptotic responses (TUNELþ cells, Fig. 5B) and down-
stream atypical p53 cleavage stimulated by activated m-cal-
pain (Fig. 5C; refs. 20, 37) were noted in NQO1-
knockdown MIA PaCa-2 clones that correlated well with
their resistance to b-lap cytotoxicity (Fig. 1).

b-Lap was an efficacious agent for the treatment of
pancreatic cancer

The overexpression of NQO1 in pancreatic cancers com-
pared with associated normal tissues (8–11), and the
ability of b-lap to kill cells expressing this enzyme, strongly
suggested its use for the treatment of pancreatic cancer.
Although b-lap can kill pancreatic cancers in vitro, the lack
of an adequate delivery vehicle to make the drug bioavail-
able for therapy in vivo limited use of this agent until
recently. A version of HPb-CD complexed with b-lap
(b-lap–HPb-CD) that increased solubility and bioavailabil-
ity of b-lap 400-fold (27) was used in clinical trials as ARQ
501 (23). In our study, b-lap–HPb-CD was used in a spleen
to liver metastatic pancreatic cancer model to test the
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efficacy of this drug against MIA PaCa-2 tumors. Tumor
growth assessed as body weight increases due to MIA PaCa-
2 tumor burden was significantly repressed in animals
treated with 20 or 30 mg/kg b-lap–HPb-CD versus HPb-
CD alone (Fig. 6A). Reduction of tumor burden in MIA

PaCa-2-containingmice treated with 20 or 30mg/kg b-lap–
HPb-CD correlated well with overall survival (P< 0.0001)
versus mice treated with HPb-CD alone (Fig. 6B). In fact,
100% (10/10) of mice treated with b-lap–HPb-CD were
alive at 11 weeks posttreatment and were "apparently
cured" compared with 100% tumor-driven lethality of
mice bearing metastatic MIA PaCa-2 tumors exposed to
HPb-CD. These findings were corroborated in parallel
studies evaluating tumor volumes using BLI, in which
significant tumor regression without regrowth was noted
after drug treatment in metastatic pancreatic human/mur-
ine tumor model (Fig. 6C and D; Supplementary Figs. 2
and 3). Morbidity, monitored by weight loss, was not
noted at these optimal doses of b-lap–HPb-CD.

Discussion

Numerous studies reported elevated levels of NQO1 in
various human cancers, linking overexpression of this
enzyme for prognostic and predictive values (12, 40).
We previously reported the NQO1-mediated antitumor
activity in vitro of b-lap, using endogenous and exogenous
NQO1-overexpressing pancreatic, breast, prostate, and
NSCLC models (19, 21, 25, 26). Prior to this work, genetic
demonstration of the role of NQO1 in b-lap–induced
lethality was confined to forced overexpression of NQO1
in rare polymorphic cancer cells. These studies had the
limitation of using potentially nonphysiologic NQO1
levels (due to forced overexpression), in which the enzyme
may be improperly localized and/or overexpressed in spe-
cific compartments at nonphysiologic levels. We show for
the first time that the antitumor activity of b-lap can be
progressively abrogated in MIA PaCa-2 clones ordered for
NQO1 knockdown. More importantly, these knockdown
clones were used to delineate specific nodal points of
metabolism critical for b-lap–induced lethality. These
b-lap–induced events included: (i) ROS formation and
intracellular Ca2þ release from ER stores, where preloading
cells with BAPTA-AM significantly spared lethality (Fig. 1F
Table); (ii) SSBs and base damage induced by ROS by
alkaline comet assays (Fig. 2); (iii) PARP1 hyperactivation
and PAR formation (Fig. 3); (iv) NADþ/ATP depletion
(Fig. 4); and (v) programmed necrosis (Fig. 5). Further
analyses showed that an optimal threshold level of NQO1
(�90 U, Fig. 1E) was necessary to trigger b-lap–induced cell
death.

Our detailed understanding of metabolic changes occur-
ring in NQO1-overexpressing compared with knockdown
cells during b-lap–induced cytotoxicity will further
improve the development of an efficacious therapeutic
regimen. Sound, exploitable, tumor-selective approaches
based on drugable, tumor-specific protein/enzyme expres-
sion, such as NQO1, are desperately needed for clinical
trials against pancreatic cancer. Our studies highlight that
NQO1 is more than a "biomarker," but an exploitable,
tumor-selective target, whose expression is not cell-cycle
regulated, nor affected by alterations in common tumor
suppressors, such as p53 or Rb. Importantly, we show that
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NQO1 is exploitable using b-lap, whose unique futile cycle
metabolism and broad metabolic changes induced down-
streammake the drug extremely efficacious for treatment of
pancreatic cancer.

The current "standard of care" for treating advanced
pancreatic cancer is gemcitabine (Gemzar), dideoxy-
fluorocytidine (ddFC; ref. 41). However, gemcitabine
has proven palliative at best, offering only modest
extension of long-term survival for patients with
advanced disease (2). A major problem is that ddFC,
a prodrug that requires phosphorylation by deoxycyti-
dine kinase for activation, does not target a tumor-
specific enzyme that distinguishes pancreatic cancers
from normal pancreatic tissue (42). ddFC phosphoryla-
tion results in the accumulation of ddFC-triphosphate
that competes with dCTP for DNA incorporation, lead-
ing to chain termination by DNA polymerase-alpha and
replication stalling. These events cause unrecognized
DNA lesions, preventing immediate DNA break detec-
tion by repair enzymes (42). Thus, the antitumor activity
of gemcitabine is S-phase–dependent, whose efficacy is
limited by the growth state of tumors (43). Importantly,
ddFC antitumor activity has not been shown to be tumor
selective, occurring in both normal and tumor tissues
alike. Thus, nonselective cytotoxicity is a major disad-
vantage of this therapy. In contrast to gemcitabine, b-lap
kills in a tumor-selective manner, eliciting essential
oxidative stress and intracellular Ca2þ release from ER
stores generated in an NQO1-dependent manner (19,
21). These intracellular events cause irreversible DNA
damage, as a consequence of the unique hyperactivation
of PARP1, which leads to a cascade of events culminating
in a unique cell death termed "programmed necrosis" or
"necroptosis." b-Lap–HPb-CD (ARQ 501) is the only
clinically used drug that exploits this pathway of cell
death. Our current studies show that cells from patients
with pancreatic tumors expressing NQO1 levels of
at least 90 U would be indicated for b-lap therapy.
Development of novel delivery vehicles, for example,
using nanoparticles (29) to increase tumor-selective
delivery, should further augment the antitumor efficacy
of b-lap.

In addition to gemcitabine monotherapy, radiotherapy
as a single agent, or in combination with gemcitabine, is
often used to treat advanced stage pancreatic cancer
patients (44). Gemcitabine has been reported to be a
potent radiosensitizer with dose enhancement ratios of
1.6 to 2.0 (40). Gemcitabine (10 nmol/L, 24 hours) was
reported to enhance human colon cancer cell lethality
when administered immediately following ionizing radia-
tion (IR) treatments (45). The mechanism of this combi-
nation therapy involves depletion of dATP, as well as dTTP
pools. Our laboratory also reported that the mechanism of
b-lap toxicity involves nucleotide depletion. However, in
contrast to gemcitabine, b-lap depletion of nucleotide
pools (NADþ/ATP) is tumor specific, because it occurs
in NQO1-expressing tumor tissue and not in cells with
low enzymatic levels (e.g., normal tissue). Thus, an added

70

60

50

β-Lap (μmol/L, 2 h)

β-Lap (μmol/L, 2 h)

MIA PaCA-2

A

B

C

NS

KD17-1
KD17-3
KD17-7

6 8 8 + DICUT

40

A
po

pt
os

is
 (

%
 T

U
N

E
L+

 c
el

ls
 )

30

20

10

0

60

50

40

A
po

pt
os

is
 (

%
 T

U
N

E
L+

 c
el

ls
 )

30

20

10

0

NS
p53

hMSH2

p53

hMSH2

p53

hMSH2

p53

hMSH2

KD17-3

KD17-1

KD17-7

β-Lap (μmol/L, 2 h)

6 8UT

0         2         4         6          8

Figure 5. NQO1 expression knockdown protects cells from b-lap-induced
apoptosis. A, MIA PaCa-2 cells were treated with b-lap (6 or 8 mmol/L) with
or without DIC (50 mmol/L) for 2 hours. Cells were collected at 96 hours,
and apoptosis was monitored by apoptotic reactions. Apoptotic (%
TUNNELþ cells) data are means � SE from 3 independent experiments.
Student's t tests were done (**P < 0.01). B, NS- and shRNA-NQO1–
knockdown MIA PaCa-2 cells were treated with b-lap (6 or 8 mmol/L, 2
hours) and apoptosis was monitored by TUNEL assay at 96 hours. Data
are means � SE from 3 independent experiments as in Figure 5A.
Student's t tests were done (*P < 0.05) C, NS- and NQO1-knockdown MIA
PaCa-2 cells were treated with b-lap (mmol/L, 2 hours) and harvested at 96
hours forWestern blot analyses of atypical p53 cleavage (arrows,�40-kDa
p53 cleavage fragments). hMSH2 levels served for loading.

Li et al.

Clin Cancer Res; 17(2) January 15, 2011 Clinical Cancer Research282

 American Association for Cancer Research Copyright © 2011 
 on January 17, 2011clincancerres.aacrjournals.orgDownloaded from 

Published OnlineFirst January 11, 2011; DOI:10.1158/1078-0432.CCR-10-1983

http://clincancerres.aacrjournals.org/
http://www.aacr.org/


therapeutic advantage with b-lap therapy when treating
pancreatic cancer patients is anticipated to be the ability
to avoid systemic toxicity due to nonselective normal tissue
cell death. b-Lap synergizes with IR (46, 47), and we are
currently exploring its ability to enhance the radiation
lethality responses of pancreatic cancers. Our group found
that the combination of sublethal doses of IR and b-lap
kills prostate cancer cells expressing elevated endogenous
NQO1 levels as a result of extensive ROS formation,
intracellular ER Ca2þ release, massive DNA damage, PARP1
hyperactivation, and dramatic NADþ/ATP depletion (48).
Because b-lap–induced PARP1 hyperactivation utilized
nucleotide pools (i.e., caused dramatic depletion of NADþ

and ATP as a direct consequence of NADH and NADþ

losses) for its activity, DNA repair responses were blocked,
including base excision repair and all other DNA repair
pathways requiring ATP. Thus, b-lap greatly enhanced the
lethal effects of radiotherapy in vivo, as reported in vitro
(46, 47).
Our data clearly showed that NQO1 was a key deter-

minant in antitumor efficacy of human and mouse pan-
creatic cancers. The activity of NQO1 was elevated greater
than 10-fold in pancreatic cancer patients compared with
associated normal tissues in more than 70% of patients
(8–11). Therefore, monitoring the enzymatic activity of
NQO1 and treating NQO1-overexpressing patients with
b-lap should result in maximal therapeutic efficacy, with

minimal side-effects. Application of site-specific drug
delivery, such as using b-lap–encapsulated millirods
(49) or b-lap–loaded micelles, was shown as an efficient
solution to solubility and delivery problems that
enhanced b-lap–induced anticancer efficacy (29).
Because combined treatment of sublethal doses of IR
with b-lap resulted in synergistic therapeutic efficacy in
NQO1-overexpressing prostate cancers (48), combina-
tion of b-lap micelles with IR or any other DNA damaging
agents (e.g., gemcitabine) may be an ideal therapeutic
strategy to treat NQO1-overexpressing pancreatic cancer
patients.

In summary, we theorize that b-lap, in an optimal
formulation (and/or possibly enhanced when combined
with DNA damaging agents), is ideally suited for treating
pancreatic cancer patients. Our studies suggest that the
antitumor efficacy of b-lap could be further enhanced
with knowledge of key principal determinants of its
tumor selectivity identified in our NQO1-knockdown
clones. Our data specifically define the mechanism of
PARP1 hyperactivation, strongly suggesting that agents
that cause ROS or SSBs, such as IR, should be potentiated
by b-lap because of a lowering of threshold of DNA
lesions required for PARP1 hyperactivation. b-Lap ther-
apy alone or in combination with other DNA damaging
agents, therefore, represents an exploitable and clinically
available therapy for pancreatic cancer, as well as other
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specific cancers (e.g., breast, prostate, and NSCLC) in
which NQO1 levels are endogenously elevated.
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