Multi-modality Molecular Imaging


Non-invasive imaging has transformed pre-clinical studies of physiology, pharmacology, and drug development. Novel instrumentation together with reporter molecules and strategies have provided new insights into disease progression and response to therapy. The ability to effectively tag novel therapeutics provides vital insights into pharmacokinetics and pharmacodynamics allowing more effective selection of lead drugs and evaluation of their behavior in vivo.

Progressively molecular imaging is making inroads into the clinic transforming traditional radiology from an anatomical discipline to provide prognostic biomarkers. Historical developments and future progress rely on novel chemistry: we are exploring and developing applications of novel molecular reporter strategies to encompass magnetic, radionuclide, and optical tags to facilitate progress in such modalities as fluorescence, chemiluminescence, PET-SPECT, and MRI. 


Multi-modality approaches

Non-invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. L. Liu, D. O’Kelly, R. Schuetze, G. Carlson, H. Zhou, M. L. Trawick, K. G. Pinney and R. P. Mason,Molecules, 2551, 2021 DOI: 10.3390/molecules26092551; PMID: 33925707; PMCID: PMC8125421.

Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. N. J. Serkova, K. Glunde, C. R. Haney, M. Farhoud, A. DeLille, E. F. Redente, D. Simberg, D. C. Westerly, L. Griffin, R. P. Mason, Cancer Res., 81(5), 1189-1200, 2020 Dec, DOI: 10.1158/0008-5472.CAN-20-0373

MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.  Chiu TD, Arai TJ, Campbell Iii J, Jiang SB, Mason RP, Stojadinovic S.  PLoS One. 2018 May 30;13(5):e0198065. doi: 10.1371/journal.pone.0198065. eCollection 2018

A Perspective on Vascular Disrupting Agents that Interact with Tubulin: Preclinical Tumor Imaging and Biological Assessment. R. P. Mason, D. Zhao, L. Liu, M. L. Trawick, and K. G. Pinney, Integr. Biol., 3, 375-387, 2011 DOI: 10.1039/C0IB00135J; PMID: 21321746.

Multimodality imaging of hypoxia in preclinical settings. Mason R.P., Zhao D., Pacheco-Torres J., Cui W., Kodibagkar V.D., Gulaka P.K., Hao G., Thorpe P., Hahn E.W., Peschke P., Q J Nucl Med Mol Imaging 2010 Jun 54 3 259-80.

Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Tatum JL, Kelloff GJ, Gillies RJ, Arbeit JM, Brown JM, Chao KS, Chapman JD, Eckelman WC, Fyles AW, Giaccia AJ, Hill RP, Koch CJ, Krishna MC, Krohn KA, Lewis JS, Mason RP, Melillo G, Padhani AR, Powis G, Rajendran JG, Reba R, Robinson SP, Semenza GL, Swartz HM, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D. Int. J. Radiat. Biol. 2006 Oct;82(10):699-757. 

Molecular imaging of hypoxia. Krohn K.A., Link J.M., Mason R.P., J. Nucl. Med. 2008 Jun 49 Suppl 2 129S-48S.

Measuring changes in tumor oxygenation. Zhao D., Jiang L., Mason R.P. Meth. Enzymol. 2004 386 378-418.

Molecular imaging in prostate cancer. Karam J.A., Mason R.P., Koeneman K.S., Antich P.P., Benaim E.A., Hsieh J.T. J. Cell. Biochem. 2003 Oct 90 3 473-83.

Commentary on Photoacoustic Tomography.  Mason RP J. Nucl. Med. 2015 Sep


    Oximetry and oxygen enhanced MRI/Pre-clinical

    In vivo Hypoxia Characterization using Blood Oxygen Level Dependent Magnetic Resonance Imaging in a Preclinical Glioblastoma Mouse Model. N. Virani, J. Kwon, H. Zhou, R. Mason, Ross Berbeco, and A. Protti,Magn. Reson. Imaging, 76, 52-60, 2021 Feb.

    Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response? T. J. Arai, Donghan M. Yang, J. W. Campbell III, T. Chiu, X. Cheng, S. Stojadinovic, P. Peschke, and R. P. Mason,Int. J. Radiat Oncol Biol Phys, 110(5), 1519-1529, 2021 Aug 1, DOI: 10.1016/j.ijrobp.2021.03.039.

    Oxygen-Sensitive MRI Assessment of Tumor Response to Hypoxic Gas Breathing Challenge.   D. M. Yang, T. J. Arai, J. W. Campbell III, J. L. Gerberich, H. Zhou, and R. P. Mason, NMRBiomed, 32 (7) e4101 July 2019

    Examining Correlations of Oxygen Sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in Rat Prostate Tumors.   H. Zhou, S. Chiguru, R. R. Hallac, D. Yang, G. Hao, P. Peschke, R. P. Mason, Am. J. Nucl. Med. Mol. Imag.  9(2):156-167 2019

    The effect of flow on BOLD (R2*) MRI of orthotopic lung tumor.   H. Zhou, O. Belzile, Z. Zhang, J. Wagner, C. Ahn, J. A. Richardson, D. Saha, R. A. Brekken and R. P. Mason, Magn. Reson. Med., Magn Reson Med. 81:3787–3797 2019

    Tumor physiological changes during hypofractionated stereotactic body radiation therapy assessed using multi-parametric magnetic resonance imaging. H. Zhou, Z. Zhang, R. Denney, J. S. Williams, J. Gerberich, S. Stojadinovic, D. Saha, J. M. Shelton, and R. P. Mason, Oncotarget, 8: 37464-37477, 2017

    Developing Oxygen-Enhanced Magnetic Resonance Imaging as a Prognostic Biomarker of Radiation Response. D. A. White, Z. Zhang, L. Li, J. Gerberich, S. Stojadinovic, P. Peschke, R. P. Mason, Cancer Letters, 380, 69–77 (2016) doi:10.1016/j.canlet.2016.06.003

    Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. C. Glowa, C. P. Karger, S. Brons, D. Zhao, R. P. Mason, P. E. Huber, J. Debus, P. Peschke, Cancer Letters 378, (2) 97–103 (2016) doi:10.1016/j.canlet.2016.05.013

    Tumor radio-sensitivity assessment by means of volume data and magnetic resonance indices measured on prostate tumor bearing rats.  A. Belfatto, D. A. White, R. P. Mason, Z. Zhang, S. Stojadinovic, G. Baroni, and P. Cerveri, Med. Phys. 43, 1275 (2016); doi: 10.1118/1.4941746

    A Noninvasive tumor oxygenation imaging strategy using magnetic resonance imaging of endogenous blood and tissue water. Z. Zhang, R. R. Hallac, P. Peschke, R. P. Mason, Magn. Reson. Med., online DOI 10.1002/mrm.24691 Feb. 2013.

    Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. R. R. Hallac, H. Zhou, R. Pidikiti, K. Song, S. Stojadinovic, D. Zhao, T. Solberg, P. Peschke, and R. P. Mason, Magn. Reson. Med., accepted (2013) DOI 10.1002/mrm.24846.

    New Frontiers and Developing Applications in 19F NMR, J.X. Yu, R. R. Hallac, S. Chiguru, and R. P. Mason, Prog. NMR Spectrosc., 70 25–49 (2013).

    Quantitative tissue oxygen measurement in multiple organs using (19) F MRI in a rat model. Liu S., Shah S.J., Wilmes L.J., Feiner J., Kodibagkar V.D., Wendland M.F., Mason R.P., Hylton N., Hopf H.W., Rollins M.D. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2011 Jun.

    Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Kucejova B., Sunny N.E., Nguyen A.D., Hallac R., Fu X., Peña-Llopis S., Mason R.P., Deberardinis R.J., Xie X.J., Debose-Boyd R., Kodibagkar V.D., Burgess S.C., Brugarolas J. Oncogene 2011 May 30 18 2147-60.

    Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry. Gulaka P..K., Rastogi U., McKay M.A., Wang X., Mason R.P., Kodibagkar V.D. NMR in biomedicine 2011 Mar.

    Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Zhao D., Jiang L., Hahn E.W., Mason R.P. Magn Reson Med 2009 Aug 62 2 357-64.

    Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. Kodibagkar V.D., Wang X., Pacheco-Torres J., Gulaka P., Mason R.P. NMR Biomed 2008 Oct 21 8 899-907.

    Correlation of radiation response with tumor oxygenation in the Dunning prostate R3327-AT1 tumor. Bourke V.A., Zhao D., Gilio J., Chang C.H., Jiang L., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2007 Mar 67 4 1179-86.

    Tumor physiologic response to combretastatin A4 phosphate assessed by MRI. Zhao D., Jiang L., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2005 Jul 62 3 872-80.

    Comparison of BOLD contrast and Gd-DTPA dynamic contrast-enhanced imaging in rat prostate tumor. Jiang L., Zhao D., Constantinescu A., Mason R.P. Magn Reson Med 2004 May 51 5 953-60.

    Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Zhao D., Ran S.., Constantinescu A., Hahn E.W., Mason R.P. Neoplasia 2003 Jul-Aug 5 4 308-18.

    Dynamic response of breast tumor oxygenation to hyperoxic respiratory challenge monitored with three oxygen-sensitive parameters. Gu Y., Bourke V.A., Kim J.G., Constantinescu A., Mason R.P., Liu H. Appl Opt 2003 Jun 42 16 2960-7.

    Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor. Zhao D., Constantinescu A., Chang C.H., Hahn E.W., Mason R.P. Radiat. Res.2003 May 159 5 621-31.

    Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. Kim J.G., Zhao D., Song Y., Constantinescu A., Mason R.P., Liu H. J Biomed Opt 2003 Jan 8 1 53-62.

    Tumor oxygen dynamics: comparison of 19F MR EPI and frequency domain NIR spectroscopy. Song Y., Worden K.L., Jiang X., Zhao D., Constantinescu A., Liu H., Mason R.P. Adv. Exp. Med. Biol.2003 530 225-36.

    Oxygenation in a human tumor xenograft: manipulation through respiratory challenge and antibody-directed infarction. Mason R.P., Constantinescu A., Ran S.., Thorpe P.E. Adv. Exp. Med. Biol. 2003 530 197-204.

    Tumor oximetry: comparison of 19F MR EPI and electrodes. Mason R.P., Hunjan S., Constantinescu A., Song Y., Zhao D., Hahn E.W., Antich P.P., Peschke P. Adv. Exp. Med. Biol.2003 530 19-27.

    Dynamic breast tumor oximetry: the development of prognostic radiology. Song Y., Constantinescu A., Mason R.P. Technol. Cancer Res. Treat. 2002 Dec 1 6 471-8.

    Differential oxygen dynamics in two diverse Dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge. Zhao D., Constantinescu A., Hahn E.W., Mason R.P. Int. J. Radiat. Oncol. Biol. Phys. 2002 Jul 53 3 744-56.

    Quantitative assessment of tumor oxygen dynamics: molecular imaging for prognostic radiology. Mason R.P., Ran S.., Thorpe P.E. J. Cell. Biochem. Suppl. 2002 39 45-53.

    Translation to man

    Translating pre-clinical magnetic resonance imaging methods to clinical oncology.  D. A. Hormuth, II, A. G. Sorace, J. Virostko, R. G. Abramson, Z. M. Bhujwalla, P. Enriquez-Navas, R. Gillies, J. D. Hazle, R. P. Mason, C. Chad Quarles, J. A. Weis, J. G. Whisenant, J. Xu, T. E. Yankeelov, J Magn Reson Imaging. 2019 Mar 29. 

    Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer.  H. Zhou , R. R. Hallac, Q. Yuan, Y. Ding, Z. Zhang, X.-J. Xie, F. Francis, C. G. Roehrborn, R. D. Sims, D. N. Costa, G. V. Raj and R. P. Mason, DIAGNOSTICS  7 (3): 48 : SEP 2017

    Simultaneous measurement of TOLD and BOLD effects in abdominal tissue oxygenation level studies. Y. Ding, R. P. Mason, R. W. McColl, Q. Yuan, R. R. Hallac, R. D. Sims, P. T. Weatherall, J. Magn. Reson. Imaging (JMRI) 2013 Jun 7. doi: 10.1002/jmri.24006.

    Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. Hallac R.R, Ding Y., Yuan Q., McColl R.W.,Lea J., Sims R.D., Weatherall P.T., Mason R.P. NMR Biomed 2012 Dec 25 12 1321-30.

    Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. Jiang L., Weatherall P.T., McColl R.W., Tripathy D., Mason R.P. J Magn Reson Imaging 2012 Nov.


    6-Trifluoromethylpyridoxine: novel 19F NMR pH indicator for in vivo detection. Yu J..X., Cui W., Bourke V.A., Mason R.P. J. Med. Chem. 2012 Aug 55 15 6814-21.

    Enzyme Activity

    Novel S-Gal® analogs as 1H MRI reporters for in vivo detection of β-galactosidase,” P. K. Gulaka, J.-X. Yu, L. Liu, R. P. Mason and V. D. Kodibagkar, "Magn. Reson. Imaging 31(6):1006-1011 (2013).

    "Novel Fe3+-based 1H MRI "β-Galactosidase reporter molecules." J.-X. Yu, P. K. Gulaka, L. Liu, V. D. Kodibagkar, R. P. Mason, ChemPlusChem.,77 (5), 370-378 (2012) DOI: 10.1002/cplu.201100072.

    Dual 19F/1H MR gene reporter molecules for in vivo detection of ß-Galactosidase. Yu J..X., Kodibagkar V.D., Hallac R.R, Liu L., Mason R.P. Bioconjug. Chem. 2012 Mar 23 3 596-603.

    S-Gal, a novel 1H MRI reporter for beta-galactosidase. Cui W., Liu L., Kodibagkar V.D., Mason R.P. Magn Reson Med 2010 Jul 64 1 65-71.

    19F-NMR approach using reporter molecule pairs to assess beta-galactosidase in human xenograft tumors in vivo. Yu J..X., Kodibagkar V.D., Liu L., Mason R.P. NMR Biomed 2008 Aug 21 7 704-12.

    19F-NMR detection of lacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl beta-D-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. Liu L., Kodibagkar V.D., Yu J..X., Mason R.P. FASEB J. 2007 Jul 21 9 2014-9.
    19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Yu J..X., Kodibagkar V.D., Cui W., Mason R.P. Curr. Med. Chem.2005 12 7 819-48.

    Novel NMR platform for detecting gene transfection: synthesis and evaluation of fluorinated phenyl beta-D-galactosides with potential application for assessing LacZ gene expression. Yu J., Otten P., Ma Z, Cui W., Liu L., Mason R.P. Bioconjug. Chem.2004 Nov-Dec 15 6 1334-41.

    Novel NMR approach to assessing gene transfection: 4-fluoro-2-nitrophenyl-beta-D-galactopyranoside as a prototype reporter molecule for beta-galactosidase. Cui W., Otten P., Li Y, Koeneman K.S., Yu J., Mason R.P. Magn Reson Med 2004 Mar 51 3 616-20.



    Demonstrating Tumor Vascular Disrupting Activity of the Small-Molecule Dihydronaphthalene Tubulin-Binding Agent OXi6196 as a Potential Therapeutic for Cancer Treatment L. Liu, R. Schuetze, J. L. Gerberich, R. Lopez, S. O. Odutola, R. P. Tanpure, A. K. Charlton-Sevcik, J. K. Tidmore, E A.-S. Taylor, P. Kapur, H. Hammers, M L. Trawick, K. G. Pinney, and R. P. Mason, Cancers 14(17: 4208 2022

    Imaging Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265, as a Potential Therapeutic Agent for Cancer Treatment, Y. Guo, H. Wang, J.L. Gerberich, S.O. Odutola, A.K. Charlton-Sevcik, M. Li, R.P. Tanpure, J.K. Tidmore, Y. Wang, M.L. Trawick, K.P. Pinney, R.P. Mason, and L. Liu, Cancers., 13(19), 4769, 2021.

    A Scalable Open-Source MATLAB Toolbox for Reconstruction and Analysis of Multispectral Optoacoustic Tomography Data. D. O’Kelly, J. Campbell III, J. L. Gerberich, P. Karbasi, V. Malladi, A. Jamieson, L. Wang, R. P. Mason,Sci. Rep., 2021 Sept.

    Oxygen-Enhanced Optoacoustic Tomography Reveals the Effectiveness of Targeting Heme and Oxidative Phosphorylation at Normalizing Tumor Vascular Oxygenation. P. Ghosh, Y. Guo, A. Ashrafi, J. Chen, S. Dey, S. Zhong, J. Liu, J. Campbell, P. Chaitanya Konduri, J. Gerberich, M. Garrossian, R. P. Mason, L. Zhang, and L. Liu,Cancer Res., 80, 3542-55, 2020 DOI: 10.1158/0008-5472.CAN-19-3247.

    Evaluating Online Filtering Algorithms to Enhance Dynamic Multispectral Optoacoustic Tomography, D. O’Kelly, Y. Guo, and R. P. Mason, Photoacoustics, 2020

    Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography, G. Balasundaram, L. Ding, L. Xiuting, A. Attia, X. Luis, D. Ben, C. Jun, H. Ho, P. Chandrasekharan, H. C. Tay, H. Q. Lim, C. Bing Ong, R. P. Mason, D. Razansky, M. Olivo, Trans. Oncol., 11, 1251-1258 (2018).

    Tomographic breathing detection: a method to noninvasively assess in situ respiratory dynamics. O'Kelly D, Zhou H, Mason RP.  J Biomed Opt. 2018 May;23(5):1-6. doi:10.1117/1.JBO.23.5.056011.

    Commentary on Photoacoustic Tomography” R. P. Mason,” J Nucl Med. First published September 17, 2015. doi: 10.2967/jnumed.115.165183

    “Oxygen breathing challenge- the simplest theranostics” R. P. Mason, Theranostics, 2017; 7(16): 3873-3875. doi: 10.7150/thno.20655

    “In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation” J. Cao, J. Campbell, L. Liu, R. P. Mason, and A. R. Lippert, Analyt. Chem. 88 (9): 4995-5002 (2016). DOI:10.1021/acs.analchem.6b01096

    “The vascular disrupting agent combretastatin A-4 phosphate causes prolonged elevation of proteins involved in heme flux and function in resistant tumor cells”, S. Dey, S. Kumari, S. P. Kalainayakan, J. Campbell III, P. Ghosh, H. Zhou, K. E. FitzGerald, M. Li, R. P. Mason, L. Zhang, L. Liu, Oncotarget, 2017. 

    optical imaging

    Details of these Southwestern Small Animal Imaging Resource instruments may be found here:




    BLI Publications

    A Multi-Camera System for Bioluminescence Tomography in Preclinical Oncology Research. M. A. Lewis, E. Richer, N. V. Slavine V. D. Kodibagkar, T. C. Soesbe, P. P. Antich and R. P. Mason, Diagnostics3, 325-343; 2013, doi:10.3390/doi:10.3390/diagnostics3030325.

    Tubulin-destabilizing agent BPR0L075 induces vascular-disruption in human breast cancer mammary fat pad xenografts. L. Liu, H. Beck, X. Wang, H.-P. Hsieh, R. P. Mason, and X. Liu, PLoS One 7, 8 e43314 2012 doi:10.1371/journal.pone.0043314.

    In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. Saha D., Dunn H., Zhou H., Harada H., Hiraoka M., Mason, R.P., Zhao D. J Vis Exp 2011 56.

    Antivascular effects of combretastatin A4 phosphate in breast cancer xenograft assessed using dynamic bioluminescence imaging and confirmed by MRI. Zhao D., Richer E., Antich P.P., Mason, R.P. FASEB J. 2008 Jul 22 7 2445-51.

    Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Paroo Z., Bollinger R.A., Braasch D.A., Richer E., Corey D.R., Antich P.P., Mason, R.P. Mol Imaging 2004 Apr 3 2 117-24.

    Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Liu L, Mason RP, Gimi B Cancer Lett. 2014 Oct

    Fluorescent Imaging Publications

    Dynamic Contrast Enhanced Fluorescent Molecular Imaging of Vascular Disruption Induced by Combretastatin-A4P in Tumor Xenografts“, L. Liu, X. Su, R. P. Mason, J. Biomed. Nanotechnol. 10, 1545-1551 (2014)

    Development of Intrinsically Photoluminescent and Photostable Polylactones.” Z. Xie, Y. Zhang, L. Liu, H. Weng, R. P. Mason, L. Tang, K. T. Nguyen, J.-T. Hsieh, J. Yang. Adv. Mater. 2014 (online ahead of publication)DOI: 10.1002/adma.201306070

    Serial non-invasive monitoring of renal disease following immune-mediated injury using near-infrared optical imaging. Du Y., An S., Liu L., Li L., Zhou X.J., Mason, R.P., Mohan C PLoS ONE 2012 7 9 e43941.

    Development of aliphatic biodegradable photoluminescent polymers. Yang J., Zhang Y., Gautam S., Liu L., Dey J., Chen W., Mason, R.P., Serrano C.A., Schug K.A., Tang L. Proc. Natl. Acad. Sci. U.S.A. 2009 Jun 106 25 10086-91.

    Dynamic near-infrared optical imaging of 2-deoxyglucose uptake by intracranial glioma of athymic mice. Zhou H., Luby-Phelps K., Mickey B.E., Habib A.A., Mason, R.P., Zhao D. PLoS ONE 2009 4 11 e8051.

    Chemiluminescent Imaging Publications

    Chemiluminescent 1,2-Dioxetane Iridium Complexes for Near-Infrared Oxygen Sensing H. N. Kagalwala, J. Gerberich, C. Smith, R. P. Mason and A. R. Lippert, Angw. Chem. 61 (12), e202115704 2022  DOI: 10.1002/anie.202115704 and 10.1002/ange.202115704

    Ratiometric pH Imaging Using a 1,2-dioxetane Chemiluminescence Resonance Energy Transfer Sensor in Live Animals. L. Ryan, J. Gerberich, U. Haris, D. Nguyen, R. Mason, A. Lippert, ACS Sens., 5(9), 2925-2932, 2020, DOI: 10.1021/acssensors.0c01393.

    Kinetics-Based Measurement of Hypoxia in Living Cells and Animals Using an Acetoxymethyl Ester Chemiluminescent Probe.L. S. Ryan, J. L. Gerberich, J. Cao, W. An, B. Jenkins, R. P. Mason, and A. R. Lippert, ACS Sens., 2019, DOI: 10.1021/acssensors.9b00360

    A Chemiluminescent Probe for HNO Quantification and Real-time Monitoring in Living Cells. W. An, L. S. Ryan, A. G. Reeves, K. J. Bruemmer, L. Mouhaffel, J. L. Gerberich, A. Winters, R. P. Mason, A. R. Lippert, Angw. Chem., 58(5), 1361-1365, 2019, DOI: 10.1002/anie.201811257

    Energy Transfer Chemiluminescence for Ratiometric pH Imaging. W. An, R. P. Mason, and A. R. Lippert, Biomol. Chem., 16(22), 4176-4182, 2018 Jun 6, DOI: 10.1039/c8ob00972d

    "Red-shifted Emission from 1,2-Dioxetane-based Chemiluminescent Reactions" J. Y. Park, J. Gunpat, L. Liu, B. Edwards, A. Christie, X.-J. Xie, L. J. Kricka, and R. P. Mason, Luminescence: The Journal of Biological and Chemical Luminescence, early view DOI 10.1002/bio.2666 2014

    Imaging beta-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate. Liu L., Mason, R.P. PLoS ONE 2010 5 8 e12024.

    Wavelength shifting of Chemiluminescence using Quantum Dots to enhance Tissue Light penetration E. A. Mason, R. Lopez, and R. P. Mason, Optical Mater. Exp., 6 (4) 1392  (2016) DOI:10.1364/OME.6.001384

    In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation Cao, J. Campbell, L. Liu, R. P. Mason, and A. R. Lippert, Analyt. Chem. 88 (9): 4995-5002 (2016) DOI:10.1021/acs.analchem.6b01096

    Cerenkov Imaging Publications

    On the potential for molecular imaging with Cerenkov luminescence. Lewis M.A., Kodibagkar V.D., Öz OK, Mason, R.P. Opt Lett 2010 Dec 35 23 3889-91.

    pet scan

    “Use of Fc-engineered antibodies as clearing agents to increase contrast during PET”, R. Swiercz, S. Chiguru, A. Tahmasbi, S. M. Ramezani, G. Hao,  D. K. Challa, M. A. Lewis, P. V. Kulkarni, X. Sun, R. J. Ober, R. P. Mason & E. S. Ward, J. Nucl. Medpublished ahead of print May 27, 2014 (10.2967/jnumed.113.136481).

    Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Jennewein M., Lewis M.A., Zhao D., Tsyganov E., Slavine N., He J., Watkins L., Kodibagkar V.D., O'Kelly S., Kulkarni P., Antich P.P., Hermanne A., Rösch F., Mason R.P., Thorpe P.E. Clin. Cancer Res. 2008 Mar 14 5 1377-85.

    “Molecular imaging in prostate cancer”, J. A. Karam, R. P. Mason, K. S. Koeneman, P. P. Antich, E. A. Benaim, J.T. Hsieh, J. Cell. Biochem. 90, 473-83 (2003)

    Krohn KA, Link JM, and Mason RP: Molecular Imaging of Hypoxia, J. Nucl. Med., 2008; 49:129S-148S. PMID: 18523070

    “Multimodality imaging of hypoxia in preclinical settings” R. P. Mason, D. Zhao, J. Pacheco-Torres, W. Cui, V. D. Kodibagkar, P. K. Gulaka, G. Hao, P. Thorpe, E. W. Hahn and P. Peschke, QJ Nucl. Med Mol Imaging 54(3):259-80 2010 [PMCID: PMC3044928; NIHMSID: NIHMS261584


    Details of this Southwestern Small Animal Imaging Resource instrument may be found here.

    Recent Publications

    "Synthesis of a 2-Aryl-3-Aroyl-Indole Salt (OXi8007) resembling combretastatin A-4 with application as a vascular disrupting agent." M. B. Hadamani, M. T. MacDonough, A. Ghatak, T. E. Strecker, R. Lopez, M. Sriram, B. L. Nguyen, R. J. Kessler, A. R. Shirali, L. Liu, C. M. Garner, G. Pettit, R. E. Hamel, D. J. Chaplin, R. P. Mason, M. L. Trawick, K. G. Pinney, J. Nat. Prod., 76(9):1668-78, DOI: 10.1021/np400374w 2013.

    Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.
    Alhasan M.K., Liu L., Lewis M.A., Magnusson J., Mason R.P. PLoS ONE 2012 7 9 e46106.

    A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment.
    Mason R.P., Zhao D., Liu L., Trawick M.L., Pinney K.G. Integr Biol (Camb) 2011 Apr 3 4 375-87.