We do difficult experiments at the frontier of cell physiology, often with our own methods and always with our own hands. Enter a description of the lab. This information will appear on the lab listing page.
Our lab focuses on investigating the brain circuits implicated in treatment resistant depression with the ultimate goal of developing novel therapies for this devastating disease.
We explore questions on genomes using a systems biology approach: developing and employing integrative approaches at the interface of gene regulation, epigenetics, single-cell genomics, and bioinformatics.
Gary Hon, Ph.D.
Biomedical EngineeringGenetics, Development and Disease
A major focus of the Horton lab is to determine how these transcriptional regulators contribute to the development of steatosis in various disease processes such as diabetes, obesity, and beta-oxidation defects. A second area of investigation centers on determining the function of PCSK9, a protein that is involved in determining plasma LDL cholesterol levels through its ability to post-transcriptionally regulate the expression of the LDL receptor in liver.
We are multidisciplinary team of clinicians and scientists, focusing on liver cancer risk-predictive molecular biomarkers specific to clinical contexts (ex. geographic region, liver disease etiology, and patient race/ethnicity) individual risk-stratified personalized cancer screening.
In diseases like cancer, signaling pathways can be corrupted by mutations that cause the cells to grow and spread uncontrollably. Our lab is interested in understanding how these defective pathways reprogram cellular metabolism to drive cancer growth.
Jer-Tsong Hsieh Lab research interests focus on key molecular mechanisms leading to urologic cancer progression, development of precision medicine of cancer therapy assisted with non-invasive molecular imaging.
Ming-Chang Hu Lab strives to offer novel insight into the cellular and molecular mechanisms of AKI progression to CKD and cardiovascular diseases (vascular calcification and uremic cardiomyopathy) development in CKD, and set up a solid basis for preclinical and clinical study in the future.
The research of the Huang Laboratory focuses on understanding the function of fibroblast progenitor cells and fibroblasts in regulating the immune system.
Our laboratory is interested in the molecular mechanisms governing cytokine receptor signal transduction in hematopoietic stem and progenitor cells, and understanding how deregulation in these mechanisms results in hematological malignancies and cancer.
The Huber lab is focused on understanding how activity-regulated transcription and translation in neurons controls synapse and circuit plasticity and development.
The Institute for Exercise and Environmental Medicine is a 40,000 square-foot research facility with 12 UTSW faculty working in multiple departments and divisions (Internal Medicine/Cardiology/Pulmonary, Neurology, PM&R, Anesthesiology, Applied Physiology) with up to 20 postdocs, and 40 staff on 70 active protocols and 15 federal grants. It is a research enterprise devoted to the study of human physiology and the limits to human functional capacity in health and disease.