Sabari Lab
We study how biomolecular condensates organize gene regulation.
- Ben Sabari, Ph.D.
We study how biomolecular condensates organize gene regulation.
Saelices Lab employs crystallography and cryo-EM to study amyloid deposition and design anti-amyloid tools.
The Saha Lab.
Sakano Lab investigates FMRP's influence on auditory brainstem development in Fragile X Syndrome. Using a mouse model, we examine gene expression and its potential link to autism, auditory processing, hyperacusis, and tinnitus.
We seek to understand how RNA/protein assemblies control cellular states, and how related pathways are hijacked by diseases of aging.
The Sandstrom Lab works to identify the fundamental molecular mechanisms through which the immune system can recognize pathogens and stress.
Satterthwaite Lab studies the signals that control B lymphocyte development, activation, and differentiation into antibody-secreting plasma cells, both normally and in autoimmune diseases such as lupus. We hope that by defining these events, we can reveal new approaches to modulate antibody responses therapeutically.
The Saunders Lab aims to advance our understanding of the bacterial domain of life using high throughput genetics to map the molecular interactions that underly cellular physiology.
The Saxena lab's research interests include Icodextin in high peritoneal transporters; Kremezin study in patients with chronic kidney disease; SV40 in focal segmental glomerulosclerosis; molecular studies in lupus nephritis.
The main focus in our laboratory is the identification and physiological characterization of adipocyte-specific gene products and the elucidation of pathways that are an integral part of the complex set of reactions that drive adipogenesis.
The Schoggins Lab studies innate immunity at the virus-host interface. We are interested in mechanisms of cellular antiviral defense and the role these responses play during viral disease.
What are the causes and consequences of cytoskeletal diversification?
The Seemann Lab studies the molecular mechanisms governing the function and inheritance of the mammalian Golgi apparatus.
We aim to characterize the ways in which reward systems vary from individual to individual and understand how this variation determines propensity for depression and addiction-like behavior.
Nutrition and exercise intervention to reduce cardiovascular risk factors; weight loss and maintenance in bariatric surgery patients; role of nutrition and exercise in cardiovascular risk factors; influence of the eating environment on energy intake.
The Shahmoradian lab investigates the roles of domain-specific neuronal proteins using advanced cryo-imaging techniques to understand their impact on cellular dynamics and neurological health.
Our lab researches Cerebellar Dysfunction, Brainstem Dysfunction, High-Throughput Screen, and Human Studies.
The BraNiC lab is dedicated to developing advanced methods for assessing the potential for brain function recovery after severe brain injuries.
The Sharma lab is interested in investigating intermediary metabolism utilizing carbon-13 stable isotope tracers in conjunction with magnetic resonance spectroscopy (MRS), magnetic resonance imaging (MRI), and mass spectrometry (MS).
The overall goal of our laboratory is to discover the processes in endothelial cells that govern cardiovascular and metabolic health and disease.
Shay Lab is interested in the relationships between aging and cancer and have focused on the role of the telomeres and telomerase in these processes.
The ultimate aim of the Shiloh Lab is to contribute to the development of vaccines and treatments for Mycobacterium tuberculosis (Mtb).
Our laboratory’s focus is to understand the intrinsic roles of lysosomes and their regulatory functions in cellular and organismal homeostasis, with the ultimate goal of identifying novel therapeutic targets for a wide range of disease conditions.
Our primary goal in Sieber Lab is to understand the dynamic changes in metabolic programs that support developmental and disease progression.