Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

Sabari Lab

We study how biomolecular condensates organize gene regulation.

  • Ben Sabari

Sadek Lab

A major focus of our lab is to identify mechanisms of cardiomyocyte cell cycle regulation, and discover ways to reawaken regenerative pathways in the adult mammalian heart. We are also developing several structural, molecular, and physiological tools to interrogate the mechanistic underpinnings of various forms of cardiomyopathy.

  • Hesham A Sadek, M.D., Ph.D.
Heart Regeneration
Genetics, Development and Disease

Saelices Lab

Saelices Lab employs crystallography and cryo-EM to study amyloid deposition and design anti-amyloid tools.

  • Lorena Saelices, Ph.D.
Amyloid diseases
Molecular Biophysics Neuroscience

Sandstrom Lab

The Sandstrom Lab works to identify the fundamental molecular mechanisms through which the immune system can recognize pathogens and stress. 

  • Andrew Sandstrom
Inflammasome NLRP1 Host-Pathogen Innate Immunology Innate Immunity Cell Death Inflammation
Immunology

Satterthwaite Lab

Satterthwaite Lab studies the signals that control B lymphocyte development, activation, and differentiation into antibody-secreting plasma cells, both normally and in autoimmune diseases such as lupus. We hope that by defining these events, we can reveal new approaches to modulate antibody responses therapeutically.

  • Anne Satterthwaite, Ph.D.
B cells autoimmunity
Immunology

Saunders Lab

The Saunders Lab aims to advance our understanding of the bacterial domain of life using high throughput genetics to map the molecular interactions that underly cellular physiology.

  • Scott H. Saunders, Ph.D.

Scherer Lab

The main focus in our laboratory is the identification and physiological characterization of adipocyte-specific gene products and the elucidation of pathways that are an integral part of the complex set of reactions that drive adipogenesis.

  • Philipp Scherer Ph.D.

Schizophrenia/Tamminga Research

The lab investigates the nature and treatment of cognitive deficits commonly seen in schizophrenia and related disorders.

  • Carol A. Tamminga, M.D.
Psychosis
Clinical Psychology Neuroscience

Schmid Lab

We study clathrin-mediated endocytosis (CME), the major and best understood endocytic pathway.  

  • Marcel Mettlen, Ph.D.
Cell and Molecular Biology

Schoggins Lab

The Schoggins Lab studies innate immunity at the virus-host interface. We are interested in mechanisms of cellular antiviral defense and the role these responses play during viral disease.

  • John W. Schoggins
Antiviral immunity
Immunology Molecular Microbiology

Schroeder Lab

What are the causes and consequences of cytoskeletal diversification?

  • Courtney Schroeder

Seemann Lab

The Seemann Lab studies the molecular mechanisms governing the function and inheritance of the mammalian Golgi apparatus.

  • Joachim Seemann, Ph.D.
Cancer Biology Cell and Molecular Biology

Shabel Lab

We aim to characterize the ways in which reward systems vary from individual to individual and understand how this variation determines propensity for depression and addiction-like behavior.

  • Steve Shabel, Ph.D.
Neuroscience of Motivated Behavior
Neuroscience

Shah (Meena) Lab

Nutrition and exercise intervention to reduce cardiovascular risk factors; weight loss and maintenance in bariatric surgery patients; role of nutrition and exercise in cardiovascular risk factors; influence of the eating environment on energy intake.

  • Meena Shah, Ph.D.

Shahmoradian Lab

The Shahmoradian lab focuses on some of the smallest levels of biological function, to see how disease-causing proteins behave in their crowded native intracellular setting.

  • Sarah Shamoradian, Ph.D.
tau protein alzheimer's disease protein aggregation structural biology
Molecular Biophysics

Shakkottai Lab

Our lab researches Cerebellar Dysfunction, Brainstem Dysfunction, High-Throughput Screen, and Human Studies.

  • Vikram Shakkottai, M.D., Ph.D.
Molecular Biophysics Neuroscience

Shaul / Mineo Lab

The overall goal of our laboratory is to discover the processes in endothelial cells that govern cardiovascular and metabolic health and disease. 

  • Phil Shaul, M.D.
  • Chieko Mineo, Ph.D.
Endothelial Cell Biology
Genetics, Development and Disease Genetics, Development and Disease

Shay Lab

Shay Lab is interested in the relationships between aging and cancer and have focused on the role of the telomeres and telomerase in these processes.

  • Jerry Shay, Ph.D.
aging & cancer
Cancer Biology Genetics, Development and Disease

Shiloh Lab

The ultimate aim of the Shiloh Lab is to contribute to the development of vaccines and treatments for Mycobacterium tuberculosis (Mtb).

  • Michael Shiloh, M.D., Ph.D.
Tuberculosis Microbial pathogenesis
Immunology Molecular Microbiology

Sieber Lab

Our primary goal in Sieber Lab is to understand the dynamic changes in metabolic programs that support developmental and disease progression. 

  • Matt Sieber, Ph.D.
Genetics, Development and Disease

Siegwart Lab

We aim to globally understand how the physical and chemical properties of materials affect interactions with biological systems in the context of improving therapies.

  • Daniel Siegwart

Sinnett Lab

The Sinnett Lab develops and assesses gene therapies for rare neurodevelopmental disorders.

  • Sarah Sinnett, Ph.D.

Skapek Lab

Our laboratory work examines the interface between cancer and developmental biology.

  • Stephen Skapek, M.D.
Cancer Biology Genetics, Development and Disease

Smith (Myles) Lab

Smith Lab strives to develop enabling tools for organic synthesis, allowing bioactive molecules of great complexity to be prepared in a concise and sustainable fashion.

  • Myles Smith, Ph.D.
Organic Chemistry
Organic Chemistry Biological Chemistry

SoRelle Lab

Our lab aim is to discover and translate findings into diagnostic and therapeutic solutions for patients with allergy.

  • Jeffrey SoRelle, M.D.
Immunology

Sorrell Lab

The Sorrell laboratory utilizes integrative approaches that include metabolomics, transcriptomics, organoid cultures, live microcopy, and animal models, to investigate fundamental pathways that control the uptake of nutrients and the biosynthesis of macromolecules in proliferative cells.

  • Maralice Conacci-Sorrell, Ph.D.
Cancer Biology Cell and Molecular Biology

Sreelatha Lab

Our laboratory is interested in investigating the molecular mechanisms of selenoproteins in health and disease.

  • Anju Sreelatha, Ph.D.
Selenoprotein O
Biological Chemistry Cell and Molecular Biology

Story Lab

The Story Lab has a robust research portfolio that includes radiation-induced carcinogenesis associated with the unique environment of space, molecular markers of carcinogenic risk after radiation, intrinsic radiosensitivity, modulation of drug and radiation response by pentaazamacrocyclic ring compounds with dismutase activity, high-dose per fraction radiotherapy, charged particle radiotherapy, the mechanism(s) of action of Tumor Treating Fields, and the enhancement of cancer therapy through radiation and drug combination used concomitantly with Tumor Treating Fields.

  • Michael Story, Ph.D.
radiation biology
Cancer Biology

Stowe Lab

The Stowe Lab conducts both bench and clinical research with the goal of deepening the understanding of the etiology of stroke as well as finding better therapies for those who have suffered a stroke.

  • Ann Stowe, Ph.D.

Strand Lab

The main goals of the Strand Lab are to create accurate cellular atlases of the human and mouse lower urinary tract, characterize the molecular and cellular alterations in human lower urinary tract disease, and build appropriate models of the human disease in novel mouse models.

  • Douglas Strand, Ph.D.
Benign prostatic hyperplasia
Cancer Biology Genetics, Development and Disease

Stroud Lab

We investigate epigenome regulation of nervous system development and homeostasis. We are particularly interested in understanding how disruption of these mechanisms lead to neurological disorders.

 

  • Hume Stroud

Structural Biology Lab

The UTSW Structural Biology Laboratory (SBL) was formed to add macromolecular crystallography to the scientific toolkit available to the general researcher.

  • Diana R. Tomchick, Ph.D.
Biological Chemistry Molecular Biophysics

Sumer Lab

Sumber Lab conducts translational research that seeks to uncover the mysteries of cancer and develop powerful methods for its detection and cure.

  • Baran Sumer, M.D.
Cell Metabolism Immunology Surgical Imaging
Biomedical Engineering

Sun (Lu) Lab

The Sun Lab studies the most numerous cells in the brain, called “glial cells”.

  • Lu Sun, Ph.D.
neuron-glia interaction oligodendrocytes myelination neuroscience neurological disorders multiple sclerosis neonatal white matter injury
Genetics, Development and Disease Neuroscience

Sun (Xiankai) Lab

The Sun Lab is focused on developing novel imaging probes for noninvasive assessment of specific biomarkers implicated in disease initiation, progression, or regression, and exploring the translational roles of imaging probes and/or methodologies in clinical medicine practice with the ultimate goal to improve the outcome of patient care.

  • Xiankai Sun, Ph.D.
Biomedical Engineering

Syeda Lab

Our lab's focus is to develop novel tools aimed at understanding ion channel physiology and molecular mechanism in an isolated membrane environment.

  • Dr. Ruhma Syeda
Piezo1 Ion channels Mechanotransduction Mechanically activated ion channels Lipid bilayers Single channels Electrophysiology
Molecular Biophysics Neuroscience