Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

CACTUS Lab

The Collaborative for Advanced Clinical Techniques in UltraSound (CACTUS) constitutes a group of like-minded physicians, scientists, and technical experts dedicated to the advancement of clinical imaging, technical and translational research, and image-guided intervention in ultrasound.

  • David Fetzer, M.D.​
Ultrasound Translational Research

Cardio-Oncology Research Lab

Please contact our team if planning neoadjuvant Adriamycin (doxorubicin), for enrollment in the HP Cardiotox Study.

  • Vlad G. Zaha, MD, PhD
Cardio-oncology Cardiac Metabolism immuno-cardiovascular interactions Advanced Cardiovascular Imaging myocardial regeneration
Biomedical Engineering

Cardiovascular Clinical Research Center (CCRC)

We conduct state-of-the-art clinical trials in the field of cardiovascular diseases, offering patients access to advanced clinical therapies that would otherwise not be available.

  • Jose Joglar, M.D. FACC, FAHA, FHRS,
  • Darren K. McGuire, M.D., M.H.Sc., FACC, FAHA,

Carlson Lab

The work of Deborah Carlson, Ph.D., focuses on characterizing the inflammasome mediating the inflammatory response in the heart following thermal injury and thermal injury complicated with sepsis. 

  • Deborah Carlson, Ph.D.

Carroll Lab

The Carroll lab is interested in how groups of cells organize themselves into properly sized, polarized tubules and then maintain these structures throughout their life. 

  • Thomas Carroll, Ph.D.

Castrillon Lab

Castrillion Lab's work is aimed at understanding why endometrial or uterine cancers arise and spread, with an eye on prevention, earlier and more accurate diagnosis, improved treatments, and better overall patient outcomes.

  • Diego Castrillon, M.D., Ph.D.
Endometrial cancer
Cancer Biology

Chahrour Lab

Interrogating the genome to better understand the mechanisms causing autism spectrum disorder and other neurodevelopmental disorders and inform innovative therapies

  • Maria Chahrour, Ph.D.
Genetics, Development and Disease Neuroscience

Chan Lab

Our lab is creating better experimental models that reveal how cancer cells metastasize and evade our immune system. We use these models to develop new drugs that engage our immune system to kill cancer cells.

  • Isaac Chan, M.D., Ph.D.

Chen (Benjamin) Lab

We work to understand the role of DNA-PKcs in DNA repair and maintenance, with the ultimate goal of improving radiation therapy as cancer treatment.

  • Benjamin Chen, Ph.D.
Cancer Biology

Chen (Chuo) Lab

We are interested in building small organic molecules and studying their functions in biological systems. Our lab started in 2004 using state-of-the-art tools to address challenging issues in the field of natural product synthesis. 

  • Chuo Chen Ph.D.
Organic Chemistry Biological Chemistry

Chen (David) Lab

Deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most human cancers. Of the many types of DNA damage that occur within the cell, DNA double-strand breaks (DSBs) are particularly dangerous.

  • David Chen, Ph.D.

Chen (Elizabeth) Lab

Elizabeth Chen Lab focuses research on cell-cell fusion, drosophila myoblast fusion, invasive membrane protrusions, actin binding and bundling proteins, and mechanoresponsive proteins.

  • Elizabeth Chen, Ph.D.
Cell and Molecular Biology Genetics, Development and Disease

Chen (Haiqi) Lab

Welcome to the Reproductive Genomics Laboratory (RGL) at UT Southwestern Medical Center where we innovate at the intersection of genomics, bioengineering, and data science to answer fundamental questions in reproductive biology.

  • Haiqi Chen

Chen (Jin) Lab

Our primary research interest is to understand the emerging roles of the “unannotated genome,” which encodes a whole new class of uncharacterized microproteins. We focus on the relevance and function of this “dark proteome” in regulating development and disease.

  • Jin Chen

Chen (Kenneth) Lab

Chen lab studies how dysregulation of RNA synthesis and degradation drives childhood cancers with the ultimate goal of identifying new therapeutic vulnerabilities to exploit in treating them.

  • Kenneth Chen, MD
Childhood cancer
Cancer Biology

Chen (Zhijian "James") Lab

Chen Lab is broadly interested in mechanisms of signal transduction, namely how a cell communicates with its surroundings and within itself.

  • Zhijian "James" Chen, Ph.D.
Genetics, Development and Disease Immunology

Cheng (Jonathan) Lab

Jonathan Cheng's Lab performs a comprehensive suite of outcome measures to assess peripheral nerve recovery and chronic neural interfacing in the research setting.

  • Jonathan Cheng, M.D.
Peripheral nerve
Biomedical Engineering

Chiang Lab

My lab has a long-time interest in understanding the mechanisms of transcription and gene regulation in mammalian cells using initially cell-free systems reconstituted with purified gene-specific transcription factors, general cofactors, and components of the general transcription machinery to recapitulate transcriptional events in vitro. 

  • Cheng-Ming Chiang, Ph.D.
Cancer Biology Cell and Molecular Biology

Choi (Changho) Lab

Magnetic resonance spectroscopy (MRS) provides an effective tool for detecting bio-chemicals in living systems noninvasively. Dr. Choi’s lab focuses on technical and clinical development of MR spectroscopy (MRS) in the brain in vivo.

  • Changho Choi, Ph.D.

Chong Lab

The Chong Research group has been conducting clinical and translational research on cutaneous lupus including outcome measure development for clinical trials, biomarkers for diagnosis and prognosis, and disease outcomes.

  • Benjamin Chong, M.D.

Chook Lab

The Chook Lab studies physical and cellular mechanisms of Kaps. Our long-term goals are to understand how the macromolecular nuclear traffic patterns coordinated by the 20 human Kaps contribute to overall cellular organization.

  • Yuh Min Chook, Ph.D.

Chopra Lab

Chopra Lab's research is focused on High-Intensity Focused Ultrasound (HIFU) , which is a form of image-guided therapy capable of non-invasive tissue ablation and drug delivery.

  • Rajiv Chopra, Ph.D.

Chuang (David) Lab

The unifying theme of David Chuang Lab's research focuses on the biochemistry and structural biology of macromolecular machines.

  • David Chuang, Ph.D.
Biological Chemistry

Chung Lab

Chung Lab uses primary human specimens, patient-derived xenograft models, and genetically engineered mouse models to study the molecular mechanisms underlying disease stem cell function in hematologic malignancies.

  • Stephen Chung, M.D.
Cancer Biology

Cleaver Lab

Our lab focuses on the molecular and cellular mechanisms underlying cell fate specification during blood vessel development and organogenesis.

  • Ondine Cleaver, Ph.D.
Organogenesis
Genetics, Development and Disease

Cobanoglu Lab

Both we (Cobanoglu et al., 2013) and others (Murphy, 2011) have reported that active machine learning driven experimentation can increase efficiency in the drug discovery process in the preclinical stage. We have a view towards integrating our computational work with an experimental pipeline. That is exactly why we are housed in a biomedical powerhouse, the UT Southwestern Medical Center, to execute this vision.

  • Murat Can Çobanoğlu, Ph.D.

Cobb Lab

The Cobb lab studies signal transduction mechanisms of protein kinases and how kinase structures lead to cell biological functions. We are particularly focused on the contributions of ERK MAP kinases to pancreatic beta-cell function and to lung cancers, and on the cell biological actions of WNK protein kinases.

  • Melanie Cobb, Ph.D.
Cancer Biology Cell and Molecular Biology

Collins Lab

We believe that understanding the basic biology of the schistosomes is key to developing the next generation of anti-schistosome drugs and vaccines. We also contend that by studying the basic biology of these fascinating organisms, we can better understand important basic biological processes common to all animals, including humans. For that reason, we study schistosomes from multiple angles using a variety of modern molecular approaches.of the lab. 

  • James J. Collins III, Ph.D.
Cell and Molecular Biology Genetics, Development and Disease

Conrad Lab

RNA Biology Meets Herpes Virology

  • Nicholas K. Conrad, Ph.D.
RNA
Biological Chemistry Molecular Microbiology

Conzen Lab

 In prior work, my laboratory focused on identifying novel mechanisms of therapy-resistance and progression in breast, prostate and ovarian cancer. 

  • Suzanne D. Conzen, M.D.
Cancer Biology

Corbin Lab

The research focus in the Corbin lab investigates strategies that exploits the deviant metabolism of cancer cells (namely the reprogramming of lipid metabolism and altered redox biology) for therapeutic purposes.

  • Ian Corbin, Ph.D.
Biomedical Engineering Cancer Biology

Corey Lab

Corey Lab is using nucleic acids or nucleic acid mimics to explore important cellular processes, develop novel therapeutic tools and strategies.

  • David R. Corey, Ph.D.
Nucleic Acids
Biological Chemistry Molecular Biophysics

Cowell Lab

Dr. Cowell has built a research program focused on the development of bioinformatics and computational biology methods for studying the immune system and infectious diseases.  

  • Lindsay Cowell, Ph.D.
Cancer Biology Immunology