The Elmquist laboratory uses mouse genetics to identify circuits in the nervous system that regulate energy balance and glucose homeostasis. We have developed unique mouse models allowing neuron-specific manipulation of genes regulating these processes.
Our laboratory is focused on the molecular control of lipid metabolism, particularly in the intestinal tract. We employ a variety of disciplines including molecular and cell biology, mouse models and organoid technologies.
Obesity and metabolic diseases have been increasing at the alarming rate and threatening our health and economy over the world. However, we still don’t know much about how our metabolic homeostasis is regulated. Understanding the mechanism underlying the regulation of metabolism is a fundamental step towards designing new treatments for obesity and its associated diseases, and many other metabolic diseases
The autonomic nervous system comprises a network of sensory and motor neurons that connect the brainstem and spinal cord to thoracic and abdominal organs. A better understanding of the anatomical and functional plasticity of the autonomic nervous system will likely move forward our understanding of numerous chronic diseases including, but not limited to, obesity, diabetes, visceral pain, neuropathy, and eating disorders.
The Goss lab collaborates with a multidisciplinary group of researchers to study the heart and lungs long after preterm birth. We are part of the Parkland Outcomes after Prematurity Study (POPS), which conducts collaborative research on outcomes of prematurity from birth through adulthood.
The Greenberg lab is focused on the development of novel therapeutic approaches to combat infectious diseases. For specific projects, please click on the links to the left.
Our goal is to tackle difficult problems in human health and cancer biology. We work on the diseases of triple-negative breast cancer and other difficult-to-treat cancers.
A major focus of the Horton lab is to determine how these transcriptional regulators contribute to the development of steatosis in various disease processes such as diabetes, obesity, and beta-oxidation defects. A second area of investigation centers on determining the function of PCSK9, a protein that is involved in determining plasma LDL cholesterol levels through its ability to post-transcriptionally regulate the expression of the LDL receptor in liver.
We are multidisciplinary team of clinicians and scientists, focusing on liver cancer risk-predictive molecular biomarkers specific to clinical contexts (ex. geographic region, liver disease etiology, and patient race/ethnicity) individual risk-stratified personalized cancer screening.
The Institute for Exercise and Environmental Medicine is a 40,000 square-foot research facility with 12 UTSW faculty working in multiple departments and divisions (Internal Medicine/Cardiology/Pulmonary, Neurology, PM&R, Anesthesiology, Applied Physiology) with up to 20 postdocs, and 40 staff on 70 active protocols and 15 federal grants. It is a research enterprise devoted to the study of human physiology and the limits to human functional capacity in health and disease.