Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Departments
Core Facilities >

Suleiman Lab

In the Suleiman Lab, we focus on studying the podocyte biology, specifically the actin dynamics and cytoskeleton. Our research includes examining the balance of Rac and RhoA, two members of the Rho small GTPases, in both healthy and diseased kidneys. 

  • Hani Suleiman
Glomerular Kidney Diseases Glomerular Basement Membrane Diabetic Nephropathy
Cell and Molecular Biology Molecular Biophysics

Tatara Lab

The Tatara Laboratory applies engineering technologies to study and treat infectious diseases. We are particularly engaged in device-related infection, orthopedic immunology, and pathogen virulence on biomaterial surfaces. 

  • Alexander Tatara
Biomedical Engineering Molecular Microbiology

Terada Lab

The Terada Lab is focused on several areas of cellular signaling which control basic mechanical and cell fate decision programs. 

  • Lance Terada, M.D.
Lung cancer
Cell and Molecular Biology

Thinwa Lab

The Thinwa lab studies neurotropic viruses, host defense pathways, autophagy and brain development.

  • Josephine Thinwa, M.D., Ph.D.
infectious disease Immunology
Molecular Microbiology

Tong Lab

The Tong lab studies the cellular and molecular mechanisms of cardiovascular diseases associated with systemic metabolic disorders, particularly heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF), with an eye toward translating these findings into innovative solutions to clinical problems.

  • Dan Tong, M.D., Ph.D.
Heart Failure with Preserved Ejection Fraction Atrial Fibrillation Clonal Hematopoiesis
Cell and Molecular Biology Genetics, Development and Disease

Toto Lab

My research interests include prevention of progression of renal diseases, diagnoses, and management of lipid disorders in renal disease, hypertensive nephrosclerosis, the role of angiotensin II converting enzyme inhibitors, and angiotensin II receptor blockers in renal disease. 

  • Robert Toto, M.D.
Translational Research diabetic nephrology

Tu (Chengyi) Lab

Using patient-specific stem cells, tissue engineering, and omics technologies to develop precision medicine for cardiovascular disease.

  • Chengyi Tu
Biomedical Engineering Cell and Molecular Biology

Turer Lab

The Turer Lab is interested in finding genes with novel functions in intestinal immune homeostasis. Our projects generally involve a mix of experimental approaches examining both the intestinal epithelium as well as hematopoietic causes of intestinal inflammation.

  • Emre Erol Turer, M.D., Ph.D.
Cell and Molecular Biology Immunology

Vazquez Lab

Discover the Miguel Vazquez Lab at UT Southwestern, leading research in chronic kidney disease, diabetes, and hypertension. Learn about the IDC-Pieces study—a large, NIH-supported clinical trial improving chronic disease management through innovative care models and technology.

  • Miguel Vazquez, M.D.
vazquez kidney chronic kidney disease

Vongpatanasin Lab

Explore the Vongpatanasin Lab at UT Southwestern, specializing in research on neural control of blood pressure, autonomic dysfunction, and the impact of nutrition and hormones on cardiovascular health. Discover clinical studies, lab members, and featured publications advancing hypertension and autonomic research.

  • Wanpen Vongpatanasin, M.D.
antihypertensive agents hypertension

Wang (Jialiang) Lab

The Wang Lab investigates the roles of genetic factors and transcriptional regulation in skeletal diseases and bone cancer.

  • Jialiang “Shirley” Wang, Ph.D.
Cell and Molecular Biology

Williams Lab

We are interested in understanding at a cellular level the neural control of energy balance and glucose metabolism, and elucidating how these events may participate in human disease.

  • Kevin W. Williams, Ph.D.
Neuroscience

Xie (Xiao-Song) Lab

The focus of our current research is the biochemistry and molecular characterization of ABCG5/ABCG8 transporter, aiming at understanding the mechanism by which this transport system operates to translocate cholesterol cross membranes.

  • Xiao-Song Xie, Ph.D.

You Lab

We are interested in how metabolism regulates various behaviors. We use two invertebrate model systems of C. elegans and D. melanogaster, ultimately aiming to unveil conserved neuro-molecular mechanisms throughout animals including mammals.

  • You Young-Jai, Ph.D.

Zaha Lab

Please contact our team if planning neoadjuvant Adriamycin (doxorubicin), for enrollment in the HP Cardiotox Study.

  • Vlad G. Zaha, MD, PhD
Cardio-oncology Cardiac Metabolism immuno-cardiovascular interactions Advanced Cardiovascular Imaging myocardial regeneration
Biomedical Engineering Cancer Biology

Zaman Lab

Zaman’s Lab focuses on the design and development of novel cutting-edge multi-mode imaging systems to overcome current limitations in clinical systems. Most recent research project is involved with the design and developed of a multimode catheter-based imaging system called a Circumferential Intravascular Radioluminescence Photoacoustic Imaging (CIRPI) for early detection of thin-cap-fibro-atheroma (TCFA), the underlying causes of coronary artery disease, one of the leading causes of morbidity and mortality in the USA and worldwide. Further, the CIRPI system characterizes the plaques based on disease tissue compositions to unravel their complex structures. This CIRPI system integrates optical, photoacoustic, radioluminescence and ultrasound imaging. We seek to better understand the underlying causes of the disease mechanisms. We are dissecting the role of TCFA perturbations on vascular wall processes during atherosclerosis progression. Our lab also studying novel molecular imaging methods to study coronary arterial disease, carotid stenosis, and myocardial ischemia in subcellular level.

  • Raiyan Zaman, Ph.D., MSEE
Biomedical Engineering

Zhang (Zhao) Lab

In the Zhang Lab, we seek to understand the molecular mechanisms of metabolic diseases, with the long-term goal of creating novel therapeutic strategies.

  • Zhao Zhang, Ph.D.
Diabetes obesity non-alcoholic fatty liver disease
Genetics, Development and Disease

Zhu Lab

Our lab is interested in understanding the relationship between injury, regeneration, and cancer. We are focused on identifying the genes and mechanisms that regulate regenerative capacity in the liver and understanding how these contribute to hepatocellular carcinoma development.

  • Hao Zhu, M.D.

Zigman Lab

We investigate the neuro-hormonal basis for complex eating behaviors and blood glucose control, with the ultimate goal of designing new methods to prevent and treat extremes of body weight, blood glucose, and associated disorders of mood and metabolism.

  • Jeffrey Zigman, M.D., Ph.D.
Genetics, Development and Disease Neuroscience