Mukhopadhyay Lab research aims to understand how the primary cilium regulates downstream pathways to ultimately drive morphogenesis in different tissues. We undertake a multi-pronged approach including proteomics, cell biology, biochemistry, reverse genetics, and generation of innovative mouse models to study regulation of signaling pathways by cilia in in cellular and organismal contexts.
The Munshi Lab is a dedicated group of scientists seeking to identify the molecular drivers of normal cardiac rhythm and disease-associated dysrhythmias.
Nikhil Munshi, M.D., Ph.D.
Cell and Molecular BiologyGenetics, Development and Disease
Muto lab leverages both cutting-edge wet-lab and multi-omics approaches to understand gene regulatory mechanism driving kidney diseases. Current projects are focused on acute kidney injury and polycystic kidney disease.
The mission of the Najafov Lab is to understand the role of cell death in physiology and disease. Our research is focused on necroptosis and how it can be targeted to develop novel strategies for treating cancer.
The Nam lab asks how the shape of an RNA regulates its function. We study the biochemical and structural mechanisms in RNA-mediated gene regulation pathways important for normal and disease states.
The Nanes Lab investigates how the keratin intermediate filament cytoskeleton organizes cell regulatory circuits during skin development, wound healing, and cancer.
The Nanoimmune Therapeutics Lab’s mission is to develop and translate novel immunotherapies, with a particular focus on addressing malignant cancers in humans and animals.
The mission of Napierala Lab is to contribute to the development of therapies and a cure for Friedreich’s ataxia (FRDA) by elucidating molecular mechanisms causing the disease, developing novel cellular and animal models of FRDA, identifying disease biomarkers and testing novel therapeutic approaches.
The focus of the Neuromuscular Center is the diagnosis and treatment of muscle diseases known as metabolic myopathies, including inherited disorders of muscle fat, carbohydrate, and mitochondrial muscle metabolism.
We study bacterial colonization of the intestinal tract, to understand how both benign and pathological bacteria affect their environment. Our long-term goal is to treat intestinal diseases by genetically engineering bacteria in vivo.
The Ank Nijhawan research team is focused on improving outcomes for people living with or at risk for HIV, and ensuring their access to comprehensive healthcare and social support services. We also focus on individuals involved in the criminal legal system, and specifically the overlap of infectious diseases such as HIV, hepatitis, sexually transmitted infections and substance use.
Our lab works with murine disease models and employs Biochemistry, Molecular and Cell Biology to investigate brain glycogen metabolism and related neurodegenerative diseases.
Dr. Noh's research specializes in deducing causal inference for time series microscopy images and developing statistical methods for genomic data analysis. Currently, he collaborates with peers in the Green Center for Systems Biology and in the Lyda Hill Department of Bioinformatics to develop statistical methods to resolve complex biomedical data.
Research conducted by the Nomellini Lab utilizes animal models as well as human samples to examine the interaction between the innate and adaptive immune responses that occur after injury or infection, and the heterogeneity of the immune responses that occur in each individual. Led by Vanessa Nomellini, M.D., Ph.D., our lab ultimately aims to develop personalized immune therapies to reverse the immunosuppression that can occur in ICU survivors.
Vanessa Nomellini, M.D., Ph.D.
immunotherapyinjury repairgeneral surgeryemergency s burntraumacritical care surgeryICU
The focus of the Obata Lab is to study how environmental signals (e.g., microbiota, diet, day/night cycles) shape intestinal neural circuits and immune cell networks. A variety of experimental techniques are used, including state-of-the-art imaging technologies, viral tracing of gut innervation, in vivo and ex vivo physiological assays, gnotobiotic systems and multi-omics technologies. The Obata lab is also interested in elucidating the molecular mechanisms of inter-organ communication, including the Gut-Brain axis.
The Oh lab is committed to elucidating how G protein-coupled Receptor (GPCR) works in regulating metabolism and identifying new avenues for developing therapeutics to treat metabolic syndromes such as type 2 diabetes, insulin resistance.
Dayoung Oh, Ph.D.
G protein-coupled receptortype 2 diabetesobesitymetabolic syndrome
Our mission is to design and develop original devices, software solutions, and combined unique methodologies that translate into discoveries for next generation care.