Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

Cai (Xin) Lab

How do cells sense metabolites to drive their growth and proliferation?  We seek to study metabolites not only as nutrients but as cellular instruction signals that dictate cell biology. 

  • Xin Cai, M.D., Ph.D.
Cancer metabolism Mitochondria signaling
Cancer Biology Cell and Molecular Biology

Calvier Lab

The Calvier Lab's research focuses on endothelial modulation as a therapeutic approach to inflammatory diseases.

  • Laurent Calvier

Camacho Lab

The Camacho Lab focuses on understanding key genetic events that lead to cancer in an effort to identify novel targets that will help improve existing therapies

  • Cristel Camacho, Ph.D.
Cancer Biology

Cancer Care Delivery Research Collaborative

The CDR Collaborative studies last mile delivery problems across the cancer control continuum to develop and implement solutions.

  • Arthur S Hong, M.D., M.P.H.

Cao Lab

We study bacterial RNA polymerase function and regulation.

  • Xinyun (Sherry) Cao, Ph.D.
Biological Chemistry Molecular Microbiology

Cardio-Oncology Research Lab

Please contact our team if planning neoadjuvant Adriamycin (doxorubicin), for enrollment in the HP Cardiotox Study.

  • Vlad G. Zaha, MD, PhD
Cardio-oncology Cardiac Metabolism immuno-cardiovascular interactions Advanced Cardiovascular Imaging myocardial regeneration
Biomedical Engineering Cancer Biology

CardioPulmonary Imaging (CPI) Lab

The CPI lab is directed by Dr. Qing Zou and it works closely with a cross-disciplinary team (clinicians, scientists, fellows) to develop and translate novel MRI techniques for cardiopulmonary MRI for patients with congenital and acquired heart diseases. The research involves different aspects of MRI, including image acquisition and reconstruction, post-processing, quantitative image analysis, pre-clinical investigation, and clinical translation and evaluation. The lab has access to a cardiac-dedicated clinical 1.5T scanner (Philips), a research-dedicated low-field 0.55T MR scanner (Siemens), three research-dedicated 3T scanners (Philips, Siemens, GE). The lab also has access to a high-field 7T research scanner (Philips) for research on the high-field scanner. Some of the scanners also have the capability to do multi-nuclear imaging.

  • Qing Zou, Ph.D.
Biomedical Engineering

Cardiovascular Clinical Research Center (CCRC)

We conduct state-of-the-art clinical trials in the field of cardiovascular diseases, offering patients access to advanced clinical therapies that would otherwise not be available.

  • Jose Joglar, M.D. FACC, FAHA, FHRS,
  • Darren K. McGuire, M.D., M.H.Sc., FACC, FAHA,

Cardiovascular Physiology Autonomic Function Lab

The global focus of the Cardiovascular Physiology Autonomic Function Laboratory is to examine the adaptive capacity of the circulation.

  • We study the effects of exercise training, bed rest deconditioning, spaceflight, high altitude, aging, and the effects of cardiovascular diseases, such as heart failure.
  • By using sophisticated tools to assess cardiovascular structure and function, our research team brings "Olympic" and "space age" science to the solution of common clinical problems such as fainting, hypertension, or patients with shortness of breath. 
  • We focus on measuring how the cardio-respiratory system distributes oxygen from the environment to the muscles.
  • Our facility is one of the few labs in the world that can measure the limitations to exercise capacity at every step along the "oxygen cascade" - including the lungs, heart and muscles.
  • We use invasive and non-invasive tools to assess cardiovascular structure and function, as well as circulatory control mechanisms.
  • Benjamin Levine, M.D.
  • James MacNamara, M.D.
  • Satyam Sarma, M.D.

Carlson Lab

The work of Deborah Carlson, Ph.D., focuses on characterizing the inflammasome mediating the inflammatory response in the heart following thermal injury and thermal injury complicated with sepsis. 

  • Deborah Carlson, Ph.D.

Carroll Lab

Kidney disease has reached epidemic proportions in the U.S. The Carroll Lab performs basic and translational research focused on kidney development, maintenance and regeneration. 

  • Thomas Carroll, Ph.D.
Biomedical Engineering Genetics, Development and Disease

Castrillon Lab

Castrillion Lab's work is aimed at understanding why endometrial or uterine cancers arise and spread, with an eye on prevention, earlier and more accurate diagnosis, improved treatments, and better overall patient outcomes.

  • Diego H. Castrillon, M.D., Ph.D.
Endometrial cancer
Cancer Biology

Chahrour Lab

Interrogating the genome to better understand the mechanisms causing autism spectrum disorder and other neurodevelopmental disorders and inform innovative therapies

  • Maria Chahrour, Ph.D.
Genetics, Development and Disease Neuroscience

Chalak Lab

Welcome to the Chalak Lab

  • Lina Chalak, M.D.

Chan Lab

Our lab is creating better experimental models that reveal how cancer cells metastasize and evade our immune system. We use these models to develop new drugs that engage our immune system to kill cancer cells.

  • Isaac Chan, M.D., Ph.D.
Metastasis Breast Cancer natural killer cells tumor immunology
Biomedical Engineering Cancer Biology

Chen (Chuo) Lab

We are interested in building small organic molecules and studying their functions in biological systems. Our lab started in 2004 using state-of-the-art tools to address challenging issues in the field of natural product synthesis. 

  • Chuo Chen Ph.D.
Organic Chemistry Biological Chemistry

Chen (David) Lab

Deficiencies in DNA-damage signaling and repair pathways are fundamental to the etiology of most human cancers. Of the many types of DNA damage that occur within the cell, DNA double-strand breaks (DSBs) are particularly dangerous.

  • David Chen, Ph.D.

Chen (Elizabeth) Lab

Elizabeth Chen Lab focuses research on cell-cell fusion, drosophila myoblast fusion, invasive membrane protrusions, actin binding and bundling proteins, and mechanoresponsive proteins.

  • Elizabeth Chen, Ph.D.
cell-cell fusion
Cell and Molecular Biology Genetics, Development and Disease

Chen (Haiqi) Lab

Welcome to the Reproductive Genomics Laboratory (RGL) at UT Southwestern Medical Center where we innovate at the intersection of genomics, bioengineering, and data science to answer fundamental questions in reproductive biology.

  • Haiqi Chen, Ph.D.
Genetics, Development and Disease

Chen (Jin) Lab

Our primary research interest is to understand the emerging roles of the “unannotated genome,” which encodes a whole new class of uncharacterized microproteins. We focus on the relevance and function of this “dark proteome” in regulating development and disease.

  • Jin Chen, Ph.D.

Chen (Kenneth) Lab

Chen lab studies how dysregulation of RNA synthesis and degradation drives childhood cancers with the ultimate goal of identifying new therapeutic vulnerabilities to exploit in treating them.

  • Kenneth Chen, M.D.
Childhood cancer
Cancer Biology

Chen (Zhijian "James") Lab

Chen Lab is broadly interested in mechanisms of signal transduction, namely how a cell communicates with its surroundings and within itself.

  • Zhijian "James" Chen, Ph.D.
Genetics, Development and Disease Immunology