Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

Danuser Lab

The Danuser lab develops computer vision methods and mathematical models in combination with live cell imaging approaches to unveil non-genetic mechanisms of cancer metastasis and drug resistance.
Specialty areas: Computer Vision, Computational Biology, Live Cell Imaging

  • Gaudenz Danuser, Ph.D.
  • Jungsik Noh, Ph.D.
Biomedical Engineering Cancer Biology

Data Science Shared Resource

We work with you on data management and process, database and web application, experimental design and grant support.

  • Jeon Lee, Ph.D.
Biomedical Engineering

Dauer Lab

The central goal of the Dauer Lab is to unravel the molecular and cellular mechanisms of diseases that disrupt the motor system. In exploring these diseases, we also aim to understand a fundamental question relevant to CNS disease generally: what factors determine the selective vulnerability of particular cell types or circuits to insults? Our primary focus is on Parkinson’s disease and inherited forms of dystonia. We focus our efforts on disease genes that cause these disorders, employing a range of molecular, cellular, and whole animal studies to dissect the normal role of disease proteins, and how pathogenic mutations lead to disease.

  • William Dauer, M.D.
parkinson's disease central nervous system disease Dystonia
Neuroscience

Davenport Lab

The Davenport Lab is a branch of the ANSIR Lab at UTSW that focuses on quantitative methods for human brain imaging, primarily using MRI and Magnetoencephalography (MEG).

  • Elizabeth Davenport, Ph.D.
brain alzheimer's disease concussion
Biomedical Engineering

Davis Lab

The Davis Lab is part of the Section of Molecular Medicine in the Department of Radiation Oncology

  • Anthony Davis, Ph.D.
DNA damage response
Cancer Biology Cell and Molecular Biology

De Brabander Lab

The De Brabander Lab focuses on the synthesis of complex molecular architectures, including both designed and naturally occurring substances with novel structural features and interesting biological function. 

  • Jef De Brabander, Ph.D.
Organic Chemistry

de Gracia Lux Lab

Check out the latest research efforts of de Gracia Lux's Lab!

  • Caroline de Gracia Lux, Ph.D.
Biomedical Engineering

De Nisco-Zimmern Lab

Through our expertise, our expert team is leading the charge to develop more effective alternate therapies for urinary tract infections.

  • Nicole De Nisco
  • Phillipe Zimmern

Dean Lab

The Dean Lab aims to develop and apply cutting-edge microscopy instrumentation and analyses to gain insight into otherwise intractable biological problems.

  • Kevin M. Dean, Ph.D.
Biomedical Engineering Molecular Biophysics

DeBerardinis Lab

Proper control of metabolism is required for essentially every basic biological process. Altered metabolism at the cellular level contributes to several serious diseases including inborn errors of metabolism (the result of inherited genetic defects in metabolic enzymes that lead to chemical imbalances in children) and cancer. Our laboratory seeks to characterize these metabolic disorders, understand how they compromise tissue function, develop methods to monitor metabolism in vivo and design therapies to restore normal metabolism and improve health.

  • Ralph DeBerardinis, M.D., Ph.D.
Cancer Biology Genetics, Development and Disease

DeBose-Boyd Lab

The HMG CoA reductase regulatory system researched by DeBose-Boyd Lab involves a complex, multivalent feedback mechanism that is mediated by sterol and nonsterol end-products of mevalonate metabolism.

  • Russell DeBose-Boyd, Ph.D.
biomedical engineering
Biological Chemistry Cell and Molecular Biology

Dellinger Lab

The Dellinger Laboratory studies the development of the lymphatic vasculature and diseases caused by errors in the development of lymphatic vessels.

  • Michael Dellinger, Ph.D.
Genetics, Development and Disease

DeMartino Lab

DeMartino Lab studies the biochemical mechanisms and the physiologic regulation of intracellular protein degradation.

  • George N. DeMartino, Ph.D.
Protein Degradation

Diamond Lab

We focus on neurodegenerative diseases linked to amyloid protein accumulation with the goal of developing mechanism-based diagnosis and therapy.

  • Marc Diamond, M.D.
tau protein Neurodegeneration alzheimer's disease parkinson's disease
Molecular Biophysics Neuroscience

Ding Lab

The Ding lab is led by Dr. Kan Ding, an Associate Professor and practicing neurologist who specializes in epilepsy. The lab concentrates on neurocritical care and post-traumatic epilepsy, with the goal of advancing strategies for diagnosis, treatment, and rehabilitation to improve care for those with epilepsy. 

  • Kan Ding, M.D.

Doubrovinski Lab

We study the physical mechanisms that underlie animal development.

  • Konstantin Doubrovinski, Ph.D.
Cell and Molecular Biology

Douglas Lab

The Douglas lab seeks to understand how stress response pathways alter cell physiology, and ultimately influence the aging process and human disease.

  • Peter Douglas, Ph.D.
stress age lipid sensing concussion
Cell and Molecular Biology Genetics, Development and Disease Neuroscience

Elmquist Lab

The Elmquist laboratory uses mouse genetics to identify circuits in the nervous system that regulate energy balance and glucose homeostasis. We have developed unique mouse models allowing neuron-specific manipulation of genes regulating these processes.

  • Joel Elmquist, D.V.M., Ph.D.
Neuroscience

Engelking Lab

Our laboratory is focused on the molecular control of lipid metabolism, particularly in the intestinal tract. We employ a variety of disciplines including molecular and cell biology, mouse models and organoid technologies. 

  • Luke Engelking, M.D.
SREBP polyposis colorectal cancer
Cell and Molecular Biology

Epigenetic Regulation of Social Brain

The Gospocic group studies how epigenetic pathways and gene expression regulate brain plasticity in the context of social behavior and aging by working with a unique ant species Harpegnathos saltator. We take a multidisciplinary approach and combine functional genomics, biochemistry, and behavioral assays in H. saltator, as well as the conventional Drosophila and mouse models to expedite genetic screening and provide evolutionary context to identified epigenetic pathways.

Specialty Areas: epigenetics, chromatin biology, gene regulation, social behavior, aging, neurodegeneration

  • Janko Gospocic, Ph.D.
research Epigenetics genetics aging
Genetics, Development and Disease

Erzberger Lab

Jan’s Lab is interested in understanding the dynamics of protein-RNA complexes during ribosome biogenesis. We are particularly focused on the roles of ATPases in coordinating ribosomal RNA processing and remodeling events, as well as the importance of these enzymes in signaling between the ribosome biogenesis pathway and the cell cycle machinery.

  • Jan Erzberger, Ph.D.
Ribosomes
Molecular Biophysics

Farrar Lab

The Farrar Lab is interested in understanding how external signals regulate immune cell function and development. 

  • J. David Farrar, Ph.D.
clinical immunology Immunology cancer immunology Circadian rhythms allergy infectious disease
Immunology