Parker Lab
We study how cells duplicate their genomic material and how this process goes awry in disease.
- Matthew Parker, Ph.D.
We study how cells duplicate their genomic material and how this process goes awry in disease.
The Parkland Outcomes after Prematurity Study research group focuses on the short- and long-term effects of preterm birth, to improve lifelong health outcomes for current and future patients.
Our laboratory has a particular interest in hepatic metabolism and its regulation by the immune system. We utilize genetic, epigenetic and proteomic approaches, combined with detailed physiological studies, to understand the complex mechanisms that causally link inflammation to metabolic dysfunction in obesity and fatty liver disease.
A major focus of the Patwardhan lab is translational research into mechanisms of pain and potential treatment.
Preventing Cognitive Decline by Reducing Blood Pressure Target Trial (PCOT)
Researchers at UT Southwestern Medical Center are doing a study to prevent cognitive decline in adults by reducing blood pressure.
The mission of the Pedrosa Lab is to develop and implement new imaging methods that facilitate better morphologic and pathophysiologic characterization of diseases in the body for improved patient outcomes
Translational biophotonics for noninvasive detection of systemic disease.
Petroll Lab applies engineering approaches and design principles to the investigation of fundamental clinical and biological problems in ophthalmology, while providing training to graduate students, medical students, and post-docs.
The Pfeiffer Lab is interested in how the brain forms neural representations of experience, how those representations are consolidated into long-term memory, and how those representations can be later recalled to inform behavior.
Our lab uses tractable model viruses to learn about niche-specific factors that influence viral infection and evolution.
We are developing inhibitors of pyrimidine biosynthesis and polyamine biosynthesis to treat malaria and African sleeping sickness. We study polyamine and nucleotide metabolism in African trypanosomes to learn about novel metabolism and regulation.
Learn about Dr. Shanti Pinto's Lab.
The goal of our research is to identify key immune checkpoints of gastrointestinal disorders that could be targeted for therapeutic intervention and drug development.
The Pool Lab studies neural circuits that provide a sense of purpose and direction to animal behavior and develops targeted gene therapies to re-engineer their function.
Pouratian Lab's primary mission is to explore basic human neuroscientific principles as well as identify brain mapping biomarkers of disease that can drive innovative approaches to restore function to patients with neurological and psychiatric diseases.
Dr. Prinz's research is focused on the tiny organelles within cells that do the cell’s work, much like the organs in a human body. He is best known for studies into the exchange of fats (also called lipids) between organelles at so-called membrane contact sites where organelles come in close contact within a cell.
The global focus of the Pulmonary Physiology Laboratory is the study of pulmonary exercise physiology, particularly as it pertains to pulmonary disease, normal aging, obesity, ventilatory control during exercise, applied respiratory physiology, and clinical cardiopulmonary exercise testing. The Lab consists of three separate investigative laboratories: the pulmonary function laboratory, the cardiopulmonary exercise physiology laboratory, and the body composition laboratory including DEXA imaging for the determination of percent body fat, lean body mass, bone content, visceral fat, overall fat distribution, and their effects on breathing.
Qi lab specializes in investigating the structure and function of membrane proteins related to human diseases using cryo-EM, cell-based assays, and mouse models.
Qiao lab focuses on mechanisms of cancer immunotherapy and immune-related adverse events (irAEs)
Qin Lab focuses on the development of novel synthetic transformations and strategies that will allow access to bioactive, complex natural products and efficient synthesis of pharmaceuticals and their derivatives.
We are interested in how membrane cholesterol controls diverse cellular signaling pathways to ensure lipid homeostasis, enable cell growth, and protect against infections.