The De Brabander Lab focuses on the synthesis of complex molecular architectures, including both designed and naturally occurring substances with novel structural features and interesting biological function.
The Dean Lab aims to develop and apply cutting-edge microscopy instrumentation and analyses to gain insight into otherwise intractable biological problems.
Proper control of metabolism is required for essentially every basic biological process. Altered metabolism at the cellular level contributes to several serious diseases including inborn errors of metabolism (the result of inherited genetic defects in metabolic enzymes that lead to chemical imbalances in children) and cancer. Our laboratory seeks to characterize these metabolic disorders, understand how they compromise tissue function, develop methods to monitor metabolism in vivo and design therapies to restore normal metabolism and improve health.
The HMG CoA reductase regulatory system researched by DeBose-Boyd Lab involves a complex, multivalent feedback mechanism that is mediated by sterol and nonsterol end-products of mevalonate metabolism.
The Ding lab is led by Dr. Kan Ding, an Associate Professor and practicing neurologist who specializes in epilepsy. The lab concentrates on neurocritical care and post-traumatic epilepsy, with the goal of advancing strategies for diagnosis, treatment, and rehabilitation to improve care for those with epilepsy.
The Elmquist laboratory uses mouse genetics to identify circuits in the nervous system that regulate energy balance and glucose homeostasis. We have developed unique mouse models allowing neuron-specific manipulation of genes regulating these processes.
Our laboratory is focused on the molecular control of lipid metabolism, particularly in the intestinal tract. We employ a variety of disciplines including molecular and cell biology, mouse models and organoid technologies.
Jan’s Lab is interested in understanding the dynamics of protein-RNA complexes during ribosome biogenesis. We are particularly focused on the roles of ATPases in coordinating ribosomal RNA processing and remodeling events, as well as the importance of these enzymes in signaling between the ribosome biogenesis pathway and the cell cycle machinery.
The Collaborative for Advanced Clinical Techniques in UltraSound (CACTUS) constitutes a group of like-minded physicians, scientists, and technical experts dedicated to the advancement of clinical imaging, technical and translational research, and image-guided intervention in ultrasound.
Bacteria and phages are in everlasting conflict – constantly devising new genes, systems, and mechanisms to keep pace with their competitors. The Forsberg lab studies this “evolutionary arms race”, using high-powered selections to unearth new functions and careful experiments to reveal their mechanisms.
We investigate how the immune system and gut microbiota influence brain function and behavior. We use molecular, behavioral, anatomical, and immunological approaches in the lab. In parallel, we collaborate with clinical groups to examine the role of inflammatory and gut-brain mediators in psychiatric illness.
The Foster Lab research program represents a “best in class” translational research approach in an enriched, multidisciplinary environment. Foster's academic activities include a strong translational research program, a comprehensive teaching portfolio, science outreach, contribution to local, national, and international peer review and knowledge translation.
While cardiac and thoracic surgeries are often life-saving and may invoke life-changing improvements in health related quality of life, many patients also experience varying degrees of end organ injury and associated complications that can persist in the years following surgery. In 2014 Amanda Fox, M.D., M.P.H. initiated a genomics, biomarkers and outcomes research group at UTSW. This group values multi-specialty collaborations between anesthesiologists, surgeons cardiologists, radiologists, critical care physicians, biostatisticians, geneticists, bench scientists, and many other specialties.
The Fragile X Syndrome Research Center is a team of investigators from UT Southwestern and the University of California at Riverside. The Center supports three projects representing a multilevel, integrated approach that tests mechanisms of sensory neocortical dysfunction in fragile X syndrome (FXS) and pharmacological approaches to reduce the deficits.