Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

Reese (Michael) Lab

Our lab is broadly focused on the cellular signaling that drives the interactions between the intracellular parasite Toxoplasma gondii and its varied hosts.

  • Michael Reese, Ph.D.

Reese (Tiffany) Lab

In our lab, we investigate the interactions between these multiple pathogens and the immune system.

  • Tiffany A. Reese, Ph.D.

Reinecker Lab

The Reinecker laboratory unravels and targets molecular mechanisms of key human genetic variants that cause chronic inflammatory diseases and cancer by creating novel genetic mouse and human organotypic model systems.

  • Hans-Christian Reinecker, M.D.
mucosal immunity chronic inflammatory disease Inflammatory bowel disease
Immunology

Repa Lab

We are interested in the molecular mechanisms by which nuclear hormone receptors regulate lipid and carbohydrate metabolism in the liver, intestine, pancreatic islet, and central nervous system.

  • Joyce Repa, Ph.D.

Reynolds Lab

We use statistical analysis of genome sequences drawn from thousands of organisms to distill out general patterns describing the organization of cellular systems and individual proteins.

  • Kimberly Reynolds, Ph.D.

Rice Lab

The Rice Lab uses structure, biochemistry, reconstitution, microscopy, computer modeling, and more to study the molecular mechanisms that generate and regulate microtubule dynamics.

  • Luke Rice, Ph.D.
microtubule

Rizo-Rey Lab

We investigate the mechanism of neurotransmitter release using a variety of biophysical approaches, including NMR spectroscopy, X-ray crystallography, cryo-EM, molecular dynamics simulations and liposome fusion assays.

  • Jose Rizo-Rey, Ph.D.

Roberts Lab

Roberts Lab focuses on understanding the cellular and circuit mechanisms for behavioral learning, learning from social experiences and from example.

  • Todd Roberts, Ph.D.
Neuroscience

Robertson Lab

The Robertson Lab studies mitochondrial and metabolic homeostasis in the corneal epithelium and the role of homeostatic dysfunction in the pathophysiology of corneal disease.

  • Danielle M. Robertson, O.D., Ph.D.
Cell and Molecular Biology Immunology

Rohatgi Lab

The Rohatgi Lab focuses on the role of reverse cholesterol transport in atheroprotection.

  • Anand Rohatgi, M.D.
Preventative cardiology ASCVD

Rong (Ruichen) Lab

The Rong (Ruichen) Lab is currently focusing on the development of multimodal large language models (MLLMs) for pathology image diagnosis and reasoning.

  • Ruichen Rong
Biomedical imaging

Rosen Lab

The Rosen Lab seeks to understand the formation, regulation, functions and internal structures of membraneless cellular compartments termed biomolecular condensates.

  • Michael Rosen, Ph.D.
biomolecular condensates
Molecular Biophysics

Rosenberg Lab

The significance of our research is to show effective anti-Aβ42 antibody production in large animals and safety of DNA Aβ42 immunotherapy in these models to proceed with vaccination in patients at risk for Alzheimer’s disease.

  • Roger Rosenberg, M.D.
Immunology Neuroscience

Rothermel Lab

Research in the Rothermel Laboratory focuses on deciphering the molecular mechanisms that control cardiac structure and function during normal development and in response to pathological stress.

  • Beverly A. Rothermel, Ph.D.
Cardiology Circadian rhythms Down syndrome
Cell and Molecular Biology

Ruan Lab

The Ruan Lab focuses its research on developing statistical methods and computational algorithms for multi-omics data with applications in complex human diseases.

  • Peifeng Ruan, Ph.D.
bioinformatics biostatistics chemical genomics Cancer

Sabari Lab

We study how biomolecular condensates organize gene regulation.

  • Ben Sabari, Ph.D.

Sadek Lab

A major focus of our lab is to identify mechanisms of cardiomyocyte cell cycle regulation, and discover ways to reawaken regenerative pathways in the adult mammalian heart. We are also developing several structural, molecular, and physiological tools to interrogate the mechanistic underpinnings of various forms of cardiomyopathy.

  • Hesham A Sadek, M.D., Ph.D.
Heart Regeneration

Saelices Lab

Saelices Lab employs crystallography and cryo-EM to study amyloid deposition and design anti-amyloid tools.

  • Lorena Saelices, Ph.D.
Amyloid diseases
Molecular Biophysics Neuroscience

Saha Lab

The Saha Lab.

  • Debabrata Saha, Ph.D.
Biomedical Engineering

Sakano Lab

Sakano Lab investigates FMRP's influence on auditory brainstem development in Fragile X Syndrome. Using a mouse model, we examine gene expression and its potential link to autism, auditory processing, hyperacusis, and tinnitus.

  • Hitomi Sakano, M.D., Ph.D.

Salinas Lab

We seek to understand the processes that control the immune system and how they malfunction in autoimmune diseases of the brain, including multiple sclerosis (MS).

  • Victor Salinas, M.D.,Ph.D.
Systems immunology

Sanders Lab

We seek to understand how RNA/protein assemblies control cellular states, and how related pathways are hijacked by diseases of aging.

  • David Sanders, Ph.D.
Genetics, Development and Disease

Sandstrom Lab

The Sandstrom Lab works to identify the fundamental molecular mechanisms through which the immune system can recognize pathogens and stress. 

  • Andrew Sandstrom, Ph.D.
Inflammasome NLRP1 Host-Pathogen Innate Immunology Innate Immunity Cell Death Inflammation
Immunology Molecular Microbiology

Satterthwaite Lab

Satterthwaite Lab studies the signals that control B lymphocyte development, activation, and differentiation into antibody-secreting plasma cells, both normally and in autoimmune diseases such as lupus. We hope that by defining these events, we can reveal new approaches to modulate antibody responses therapeutically.

  • Anne Satterthwaite, Ph.D.
B cells autoimmunity
Immunology

Saunders Lab

The Saunders Lab aims to advance our understanding of the bacterial domain of life using high throughput genetics to map the molecular interactions that underly cellular physiology.

  • Scott H. Saunders, Ph.D.