Search Labs

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Core Facilities >

Isogai Lab

We seek to understand how cancer cells harness the cytoskeleton to promote tumor growth, drug resistance and cancer metastasis through non-genetic, morphologic signaling programs.

  • Tadamoto Isogai, Ph.D.
Cancer Biology

Izumi Lab

In the Izumi Lab, with the ultimate goal of identifying druggable molecules/pathways in pediatric genetic disorders, we investigate the molecular mechanisms of pediatric genetic disorders due to chromosomal abnormalities and chromatin protein mutations. We employ novel genetic approaches by using patient-derived samples, induced pluripotent stem cell models and mutant mouse models.

  • Kosuke Izumi, M.D., Ph.D.
Genetics, Development and Disease

Jain (Mamta) Lab

We focus on

  •  Therapeutic clinical trials in infectious diseases
  •  Improving outcomes through the improvement of the delivery of health services
  •  Analysis of outcomes among those with infections
  • Mamta K. Jain, M.D. MPH
AIDS co-morbidities Hepatitis C HVC influenza COVID-19

Jain (Raksha) Lab

The Jain Lab is broadly interested in sex disparities in research on women's health, as well as the impact of sex hormones on airway diseases and immune response.

  • Raksha Jain, M.D., M.S.C.I.
Innate Immunity
Molecular Microbiology

Jamieson Lab

The Jamieson Lab lab emphasizes AI/ML, software development, and image analysis.

  • Andrew R. Jamieson, Ph.D.
Artificial intelligence
Biomedical Engineering

Jaqaman Lab

We are a group of biophysicists, cell biologists and computational folks interested in the spatiotemporal organization of cell surface receptors, the mechanisms underlying it, and its consequences for cell signaling. 

  • Khuloud Jaqaman, Ph.D.
Cell Signaling
Biomedical Engineering Molecular Biophysics

Jewell Lab

The Jewell Lab investigates how organisms sense environmental nutrient fluctuations and respond appropriately, fine tuning anabolic and catabolic processes to control cell growth, metabolism, and autophagy.

  • Jenna L. Jewell, Ph.D.
Cancer Biology Genetics, Development and Disease

Jiang (Huaqi) Lab

Huaqi Jiang Lab studies the regulation of adult tissue homeostasis and regeneration using a genetic model system, the adult Drosophila midgut. 

  • Huaqi Jiang, Ph.D.

Jiang (Jin) Lab

The Jiang lab studies fundamental mechanisms governing how diverse cell types are generated from naive progenitor cells and how cells of different types are put together to form appropriate body structures such as limbs during embryonic development. The lab also studies how damaged cells are replenished by stem cells during tissue repair and organ regeneration in adult life. We are particularly interested in understanding how cells communicate with one another to influence their growth and fate determination and how miscommunication among different cells leads to developmental abnormality and cancer progression.

  • Jin Jiang, Ph.D.
Cell Signaling development regeneration stem cell cell growth tumor suppressor organ size pattern formation Cancer
Cancer Biology Genetics, Development and Disease

Jiang (Youxing) Lab

Enter a description of the lab. This information will appear on the lab listing page.

  • Youxing Jiang, Ph.D.
Molecular Biophysics Neuroscience

Joachimiak Lab

Our lab seeks to uncover the structure-function relationship of macromolecules involved in protein misfolding — a key element of Alzheimer’s and other neurodegenerative diseases.

  • Łukasz Joachimiak, Ph.D.
Neurodegeneration
Molecular Biophysics

Johnson Lab

The research in the Johnson lab is focused on vertebrate nervous system development during the transition from proliferating neural stem cells to differentiating neurons and glia. 

  • Jane E. Johnson, Ph.D.
transcriptional control of neural development
Genetics, Development and Disease Neuroscience

Kahn Lab

We have two major areas of research: respiratory viruses and newly emerging pathogens. 

  • Jeffrey Kahn, M.D., Ph.D.
Molecular Microbiology

Karner Lab

The primary research focus of the Karner lab is to create and utilize novel mouse genetic models to study the role of cellular metabolism during skeletal development and disease. 

  • Courtney Karner, Ph.D.
Bone Development
Genetics, Development and Disease

Kim (Daehwan) Lab

Research in the Kim lab is focused on developing computer algorithms and statistical methods that enable accurate and rapid analysis of biological data, in particular sequencing data.

  • Daehwan Kim, Ph.D.

Kim (Jaehyup) Lab

Kim (Jaehyup) lab studies the mechanism of immune regulatory receptor regulation with a special focus on ligand identification and modulation.

  • Jaehyup Kim, M.D., Ph.D.

Kim (James) Lab

The James Kim Lab examines the communication between epithelia and stroma through the lens of fundamental developmental pathways such as Hedgehog, Wnt, and Notch pathways.

  • James Kim, M.D., Ph.D.
Cancer Biology

Kim (Taekyung) Lab

Taekyung Kim Lab is interested in understanding how sensory experience can be accurately translated into neuronal and behavioral plasticity through genetic and epigenetic networks. 

  • Taekyung Kim, Ph.D.

Kitamura Lab

Kitamura Lab's research aims to provide a biophysically-based mechanistic understanding of the neural process for learning and memory in the mouse brain.

  • Takashi Kitamura, Ph.D.
Learning and memory neural circuits hippocampus entorhinal cortex prefrontal cortex
Neuroscience

Kittler Lab

The ultimate goal of the Kittler Lab's research is to develop novel therapeutic approaches that target transcription factors, which play important roles in common solid tumors (brain, breast, lung and prostate cancer) and could therefore have translational potential.

  • Ralf Kittler, Ph.D.
Cancer Biology

Kober Lab

We are investigating how protein degradation is controlled in cells and how protein degradation contributes to lipid homeostasis.

  • Daniel Kober, Ph.D.
Protein degradation. Lipid Metabolism. Membrane protein biochemistry and structural biology.
Biological Chemistry Molecular Biophysics

Koh Lab

We are broadly interested in understanding how resident intestinal microorganisms (particularly bacteria and fungi and collectively referred to as the gut microbiome) influence the health of human cancer and stem cell transplant patients.

  • Dr. Andrew Y. Koh, MD

Kohler Lab

The Kohler research group is committed to developing and implementing new tools optimized for the study of glycosylated molecules.

  • Jennifer Kohler, Ph.D.
Glycobiology
Organic Chemistry Biological Chemistry

Kong Lab

Kong lab aims to harness the cutting-edge technologies in human genetics and genomics, immunology, and molecular biology to better understand the pathogenesis of gastrointestinal inflammation.

  • Xiao-Fei Kong M.D, Ph.D.
Gastroenterology internal medicine genetics clinical immunology

Konopka Lab

We are taking a comparative genomics approach to identify genes that have been modified in the human brain.

  • Genevieve Konopka Ph.D.