The Institute for Exercise and Environmental Medicine is a 40,000 square-foot research facility with 12 UTSW faculty working in multiple departments and divisions (Internal Medicine/Cardiology/Pulmonary, Neurology, PM&R, Anesthesiology, Applied Physiology) with up to 20 postdocs, and 40 staff on 70 active protocols and 15 federal grants. It is a research enterprise devoted to the study of human physiology and the limits to human functional capacity in health and disease.
Interventional psychiatry is treatment that combines brain stimulation with medication for difficult-to-treat mental health disorders. At UT Southwestern Medical Center, our psychiatrists have advanced training and expertise in caring for people with treatment-resistant mental health disorders.
We specialize in the latest advances in brain stimulation to bring relief to people who haven’t had success with traditional treatments.
The Ishii Laboratory is interested in understanding the bidirectional relationship between brain function and systemic metabolism with an emphasis on metabolic deficits in Alzheimer’s disease and how it differs from normal aging. Our laboratory focuses on generating hypotheses derived from open questions in clinical neurology and neuroendocrinology, testing these hypotheses using molecular genetics and neuroscience techniques in the laboratory, and whenever possible verifying these findings in clinically relevant human research studies.
We seek to understand how cancer cells harness the cytoskeleton to promote tumor growth, drug resistance and cancer metastasis through non-genetic, morphologic signaling programs.
In the Izumi Lab, with the ultimate goal of identifying druggable molecules/pathways in pediatric genetic disorders, we investigate the molecular mechanisms of pediatric genetic disorders due to chromosomal abnormalities and chromatin protein mutations. We employ novel genetic approaches by using patient-derived samples, induced pluripotent stem cell models and mutant mouse models.
The Jain Lab is broadly interested in sex disparities in research on women's health, as well as the impact of sex hormones on airway diseases and immune response.
We are a group of physicists, biophysicists, cell biologists, and “computationalists” interested in the spatiotemporal organization of cell surface receptors, the mechanisms underlying it, and its consequences for cell signaling. We utilize light microscopy, particularly single-molecule and super-resolution imaging, to monitor molecular behavior in its native cellular environment, and we develop computer vision and machine learning approaches to quantitate the observed behavior and gain insight beyond what the eye can see.
The Jewell Lab investigates how organisms sense environmental nutrient fluctuations and respond appropriately, fine tuning anabolic and catabolic processes to control cell growth, metabolism, and autophagy.
The Jiang lab studies fundamental mechanisms governing how diverse cell types are generated from naive progenitor cells and how cells of different types are put together to form appropriate body structures such as limbs during embryonic development. The lab also studies how damaged cells are replenished by stem cells during tissue repair and organ regeneration in adult life. We are particularly interested in understanding how cells communicate with one another to influence their growth and fate determination and how miscommunication among different cells leads to developmental abnormality and cancer progression.
Our lab seeks to uncover the structure-function relationship of macromolecules involved in protein misfolding — a key element of Alzheimer’s and other neurodegenerative diseases.
The research in the Johnson lab is focused on vertebrate nervous system development during the transition from proliferating neural stem cells to differentiating neurons and glia.
The primary research focus of the Karner lab is to create and utilize novel mouse genetic models to study the role of cellular metabolism during skeletal development and disease.
Research in the Kim lab is focused on developing computer algorithms and statistical methods that enable accurate and rapid analysis of biological data, in particular sequencing data.
The James Kim Lab examines the communication between epithelia and stroma through the lens of fundamental developmental pathways such as Hedgehog, Wnt, and Notch pathways.
Taekyung Kim Lab is interested in understanding how sensory experience can be accurately translated into neuronal and behavioral plasticity through genetic and epigenetic networks.