This facility is the home to five high field solution NMR spectrometers ranging from 500 MHz to 800 MHz and a Solid State 600 MHz DNP system, primarily in support of studies of macromolecular structure, function and dynamics.
The Bowen Lab focuses on the development of hybrid positron emission tomography (PET) (e.g. PET-CT and PET-MR) tools to enable precision imaging for the care and study of oncology, neurology, and cardiology patients.
The Brekken laboratory, located in the Hamon Center for Therapeutic Oncology Research, studies tumor-host interactions with a particular emphasis on extracellular matrix (ECM) and angiogenesis.
Our laboratory discovered a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control cholesterol and fatty acid synthesis.
Dr. Brown's Psychoneuroendocrine Research Program (PNE) at UT Southwestern Medical Center focuses on two different areas of research: substance abuse, particularly dual diagnoses (e.g., depression or bipolar disorder); and the effects of corticosteroids (e.g., prednisone) on mood and memory.
The Burgess lab uses Nuclear Magnetic Resonance spectroscopy and Mass Spectrometry in conjunction with stable isotope (non-radioactive) tracers to study how metabolic flux is altered by disease, pharmacology, or targeted genetic interventions.
Burstein Laboratory focuses on understanding the regulation of the inflammatory response at a molecular level, and elucidating how these events may participate in human disease.
The Busch Lab develops optical technologies for minimally and non-invasive bedside assessment of microvascular blood flow and oxygen saturation, allowing continuous assessment of aerobic metabolism.
Our lab is working with to develop a gene therapy that would allow increased Ube3a expression in the paternal copy of the gene that causes Angelman syndrome.
My research interests include lipidomics, enzymology, drug discovery, and bioanalytical chemistry in the relation to ocular biochemistry, biophysics, and physiology.
We are interested in taking bioinformatics and data integration approaches to gain insights into cancer metabolism, inborn errors of metabolism, and lung neoplasm.
How do cells sense metabolites to drive their growth and proliferation? We seek to study metabolites not only as nutrients but ascellular instruction signals that dictate cell biology.
The Camacho Lab focuses on understanding key genetic events that lead to cancer in an effort to identify novel targets that will help improve existing therapies
We conduct state-of-the-art clinical trials in the field of cardiovascular diseases, offering patients access to advanced clinical therapies that would otherwise not be available.