Scientists in the Center for Pediatric Bone Biology and Translational Research work to discover the underlying causes of poorly understood musculoskeletal disorders in children, and to understand the fundamental steps that lead to disease.
We are interested in the function of chromatin regulation of signaling pathways important for neural development, brain tumor growth and autism pathogenesis.
The Wu Laboratory mainly focuses on using stem cell models to gain novel insights in mammalian development and develop regenerative medical applications.
I am interested in developing computational models and algorithms for big data to predict patients' outcomes, which can help clinicians to tailor treatment plans for individual patients.
The focus of our current research is the biochemistry and molecular characterization of ABCG5/ABCG8 transporter, aiming at understanding the mechanism by which this transport system operates to translocate cholesterol cross membranes.
Our team is interested in developing computational models to predict patient outcomes, which will allow clinicians to tailor treatment plans for individual patients.
The lab focuses on developing bioinformatics algorithms and deep learning models to identify new disease genes and therapeutic targets for human diseases, as well as development and maintenance of data management system for genomic and clinical databases.
Wei Xu Lab strives to achieve a mechanistic understanding of fundamental cognitive processes, explore their impairments in neuropsychiatric disorders, and discover innovative treatments for these conditions.
Wei Xu, Ph.D.
neural circuitsLearning and memoryneuroscience technology
Our lab focuses on the neural dynamics for successful memory access and retrieval during episodic working memory tasks to elucidate the neural circuit mechanism in the hippocampal-cortical network.
Since I began studying the biological rhythms of insects during graduate school, I have been fascinated with the accuracy of the circadian timing system and the phenomenal influence of the circadian clock on almost all biological activities. This fascination has fueled my interest in learning about circadian rhythms for more than a quarter of a century.
Our lab focuses on developing methods, platforms, and infrastructure for the integration and analysis of multimodal healthcare and biomedical data to address important clinical questions.
The Yang Lab aims to overcome clinical unmet needs and help patients by developing and validating advanced radionuclide imaging technologies for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging. Deep learning is an important engine for overcoming the current limitations (low spatial resolution, slow data acquisition, etc.) of PET and SPECT imaging. .
Yao Laboratory identifies molecular and cellular mechanisms that determine the efficacy of vaccines and immunotherapies against infectious diseases and cancers.
We are interested in how metabolism regulates various behaviors. We use two invertebrate model systems of C. elegans and D. melanogaster, ultimately aiming to unveil conserved neuro-molecular mechanisms throughout animals including mammals.
Yu Lab is interested in the molecular and cellular basis of Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders.